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Problem definition

She is smiling, 
   she must be happy

HR:             high
HRV:           low

Prediction: STRESS
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Prototype architecture

DEAP

Insension

Video and PPG data

Face detection

RGB extraction

Skin segmentation

Obtain region of
interest (ROI)

Detrending

Preprocessing

Filtering

Plane Orthogonal to Skin (POS)
algorithm

Filtering and deep
learning enhancement

Postprocessing

PPG peak
detection

Heart rate evaluation
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Deep learning enhancements

1. Convolutional autoencoder (CNN)
• Should learn how to encode the
PPG shape

2. Long-Short-Term-Memory neural
network

• Should learn temporal dynamics
and predict the next sample based
on previous trends

Input layer

LSTM

LSTM

Dense

POS PPG

LSTM
enhanced PPG
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Evaluation

1. Current evaluation done on the publicly available DEAP dataset
2. 16 subjects used for training, 2 for validation, 2 for test
3. Compared the following rPPG methods + enhancements:

• Using just POS
• POS + Convolutional autoencoder (CNN)
• POS + Long-Short-Term Memory neural network (LSTM)

4. Used a robust PPG peak detection algorithm (Elgendi et al.) to evaluate HR
• Mean Absolute Error (MAE) between nr. of peaks detected in ground-truth and
in enhanced signals

5. Additionally computed the correlation between predicted HR and
ground-truth HR
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Errors and visual inspection

Method MAE [BPM] Correlation
Baseline 8.36 Inapplicable
POS 13.36 0.27
CNN-POS 7.92 0.24
LSTM-POS 8.09 0.40
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Correlation

1. Good correlation between predicted and ground-truth HR using LSTM-POS
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Demo video

The algorithm was ran on a sequence of facial images of one project participant
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Summary and conclusion

1. LSTM-POS method performs best, with error of 8 BPM on DEAP dataset
2. Good correlation between predicted and ground-truth HR
3. Better temporal alignment of peaks (important for HRV)

4. Future work (in progress):
• Evaluate on real-world data of PIMD people
• Use the evaluated vitals of PIMD people to infer their mental state
• Empower the PIMD people by having the system respond to their state (e.g., if
stressed, play the music they enjoy)
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