

Contact-free Monitoring of Physiological Parameters in People with Profound Intellectual and Multiple Disabilities

Gašper Slapničar, Erik Dovgan, Pia Čuk, Mitja Luštrek

Department of intelligent systems Jožef Stefan Institute

2nd International Workshop on Computer Vision for Physiological Measurement (CVPM) Seoul, 28 October 2019

Section 2: Prototype system, deep learning enhancements

Section 3: Evaluation and results

Section 4: Demo video

Section 2: Prototype system, deep learning enhancements

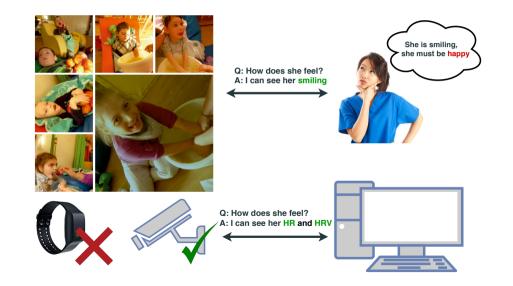
Section 3: Evaluation and results

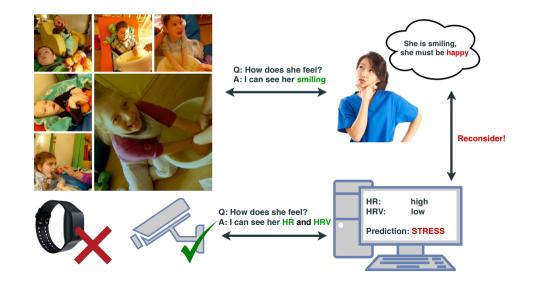
Section 4: Demo video

Q: How does she feel? A: I can see her smiling

Q: How does she feel? A: I can see her smiling

Q: How does she feel? A: I can see her smiling



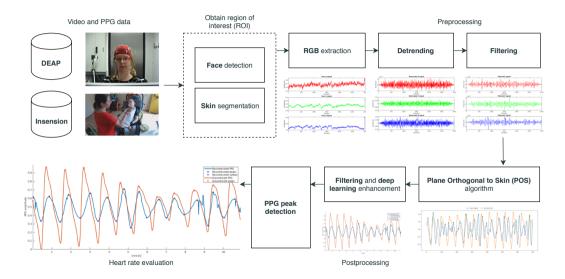


Section 2: Prototype system, deep learning enhancements

Section 3: Evaluation and results

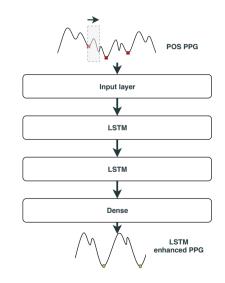
Section 4: Demo video

Prototype architecture



Deep learning enhancements

- 1. Convolutional autoencoder (CNN)
 - Should learn how to encode the PPG shape
- 2. Long-Short-Term-Memory neural network
 - Should learn temporal dynamics and predict the next sample based on previous trends



Section 2: Prototype system, deep learning enhancements

Section 3: Evaluation and results

Section 4: Demo video

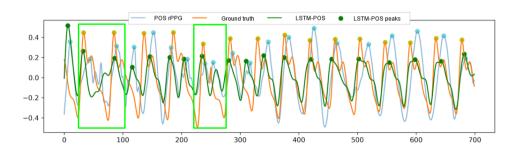
- 1. Current evaluation done on the publicly available DEAP dataset
- 2. 16 subjects used for training, 2 for validation, 2 for test
- 3. **Compared** the following rPPG methods + enhancements:
 - Using just **POS**
 - POS + Convolutional autoencoder (CNN)
 - POS + Long-Short-Term Memory neural network (LSTM)
- 4. Used a robust PPG peak detection algorithm (Elgendi et al.) to evaluate HR
 - Mean Absolute Error (MAE) between nr. of peaks detected in ground-truth and in enhanced signals
- 5. Additionally computed the **correlation** between predicted HR and ground-truth HR

Errors and visual inspection

Method	MAE [BPM]	Correlation
Baseline	8.36	Inapplicable
POS	13.36	0.27
CNN-POS	7.92	0.24
LSTM-POS	8.09	0.40

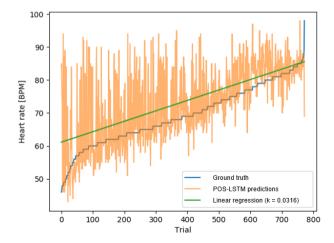
Errors and visual inspection

Method	MAE [BPM]	Correlation
Baseline	8.36	Inapplicable
POS	13.36	0.27
CNN-POS	7.92	0.24
LSTM-POS	8.09	0.40



Correlation

1. Good correlation between predicted and ground-truth HR using LSTM-POS



Section 2: Prototype system, deep learning enhancements

Section 3: Evaluation and results

Section 4: Demo video

The algorithm was ran on a sequence of facial images of one project participant

Section 2: Prototype system, deep learning enhancements

Section 3: Evaluation and results

Section 4: Demo video

- 1. LSTM-POS method performs best, with error of 8 BPM on DEAP dataset
- 2. Good correlation between predicted and ground-truth HR
- 3. Better temporal alignment of peaks (important for HRV)

- 1. LSTM-POS method performs best, with error of 8 BPM on DEAP dataset
- 2. Good correlation between predicted and ground-truth HR
- 3. Better temporal alignment of peaks (important for HRV)
- 4. Future work (in progress):
 - Evaluate on real-world data of PIMD people
 - $\cdot\,$ Use the evaluated vitals of PIMD people to infer their mental state
 - Empower the PIMD people by having the system respond to their state (e.g., if stressed, play the music they enjoy)

