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EXECUTIVE SUMMARY 

This document presents the technical requirements for the designing and implementing the components 
for detection of non-symbolic behavior signals of people with profound and multiple learning disabilities. 
Four components are discussed: for gesture recognition, facial expression recognition, vocalization 
recognition and physiological parameters monitoring.  
 
Concerning the gesture and facial expression recognition components, the existing methods oriented to 
people without disabilities have been studied. On the one hand, gesture recognition research to date has 
focused on movement (the atomic element of motion) and activity (a sequence of movements or static 
configurations). These systems need a human body model to represent and recognize the motion over the 
detected human body in images or videos. Normally, these models consist of segments, which represent all 
the parts of the body. On the other hand, facial expressions are the facial changes in response to a person’s 
internal emotional states, intentions or social communications. From a computer vision point of view, facial 
expression analysis refers to computer systems that attempt to automatically analyze and recognize facial 
motions and facial feature changes from images. Facial expression analysis includes both measurement 
of facial motion and recognition of expression. The general approach to automatic facial expression analysis 
consists of face acquisition, facial data extraction and representation, and facial expression recognition. 
 
Currently, this kind of systems is based on machine learning algorithms, which need a gesture and facial 
expression database systematically constructed, in this case, adapted to people with PMLD. Thus, a 
carefully control environment arises indispensable. To define the requirements for this particular scenario, 
some control experiments have been performed and test the state-of-the-art techniques in people with 
PMLD.  
 
To define the requirements of this particular scenario, a control set of experiments have been performed in 
order to test the behavior of the state-of-the-art methods in people with PMLD. As a result, high 
requirements of the system are needed in terms of processing memory, as well as proper environment 
conditions. 

With regard to the vocalization recognition module, existing literature was surveyed. A classical Markov 

Model-based approach was selected for control experiments. The results show the module will likely not 

present considerable hardware requirements; however, they suggest the accuracy of recognition may 

strongly depend on recording conditions and the quality of training example annotations. 

Regarding physiological parameters monitoring, non-contact devices are considered since they are most 
comfortable for people with PMLD. The main such method is monitoring of photoplethysmogram 
(measurement of the amount of blood in tissue) with a camera. This enables the extraction of parameters 
such as heart rate and its variability, which are indicators of psychological state. We have tested a few such 
methods with moderate success. They require well-lit images, advisable resolution is 1280 x 720 pixels, and 
frame rate should be 20–50 frames per second.  

This report is structured in five sections. The first one introduces the general aspects of the project’s 
implementation, the second summarizes the state of the art of the four main components and the third 
one details the methods, materials and requirements for them. The fourth section presents a set of 
experiments performed to verify each recognition technique. Finally, the conclusions are summarized in the 
fifth section.  
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1 INTRODUCTION 

The main purpose of the INSENSION project is to design and develop an information and communication 

technology (ICT) platform to help understand and support the needs of people with profound and multiple 

learning disabilities (PMLD). To do this, it is necessary to process the information collected from them and 

the world around them and to communicate their needs to others with the use of advanced technologies 

previously not available to them. Although learning symbolic communication is not generally impossible for 

people with PMLD, non-symbolic behavior is often used. Consisting of a number of atomic reactions, it 

varies from gestures and facial expressions to vocalizations and physiological reactions.  

Understanding requirements related to the technical construction of such a system demands to carefully 

consider methods for recognizing these non-symbolic behavioral signals. Therefore, in the course of the 

work reported in this deliverable we performed a number of activities leading to the definition of initial 

assumptions on the way the recognition components could be built. These assumptions are based not only 

on literature review and previous experiences of the project team, but also on the actual verification of the 

candidate methods with the use of real data collected from the target end users of the INSENSION system. 

This allowed to identify technical requirements for the signal recognition components on several levels, 

that is the level of the method to be used as the basis of a given components, the hardware and related 

requirements, as well as requirements concerning further development of these recognition components. 

Recognizing non-symbolic behavioral signals as described in the first paragraph of this section is possible 

thanks to the use of advanced technologies based on artificial intelligence (AI). Related to this, a great 

amount of work has been published in recent years. However, recognition of signals in people with PMLD 

presents special characteristics to take into account that makes this problem into an important challenge.  

Each individual uses varying methods to communicate their needs, so an individualized system is required. 

In addition, the technology should work in a relatively noisy environment and be able to recognize the non-

symbolic behaviors that occur in natural situations without influencing the normal living of the people with 

PMLD. Therefore, this scenario demands a specific approach to technological modules responsible for 

tracking behaviors in such a way that they could seamlessly adapt to the individual end user needs. For that 

reason, the final goal of this project is to develop specific tools able to recognize communication patterns of 

people with PMLD through gesture, facial expression, vocalization and physiological parameters 

recognition.   

In this deliverable, a preliminary state-of-the-art study of each recognition component (i.e. gesture, facial 

expression, vocalization and physiological parameters) has been summarized in Section 2. Based on these 

studies, the most remarkable methods have been selected – these are explained in Section 3. Then in 

Section 4, we discuss first experiments of these promising methods performed on data collected from six 

individuals with PMLD. These experiments were performed in order (1) to understand if building of the 

planned signal recognition components is possible using adaptations of existing methods, and (2) to draw 

Finally, we outline conclusions of this work in Section 5, summarizing the foreseen technical requirements. 
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2 STATE OF THE ART 

In this section, the state of the art of the four recognition components is described. 

2.1 GESTURE RECOGNITION  

Gesture is the use of motions of the limbs or body as a means of expression, to communicate an intention 
or feeling. The majority of hand gestures produced by speakers are meaningfully connected to speech. 
These communicative hand movements were defined along a “gesture Kendon’s Continuum” as five 
different kinds of gestures in [1]: 

1) Gesticulation: spontaneous movements of the hands and arms that accompany speech.  

2) Language-like gestures: gesticulation is integrated into a spoken utterance, replacing a particular 

spoken word or phrase. 

3) Pantomimes: gestures that depict objects or actions, with or without accompanying speech.  

4) Emblems: familiar gestures such as “V for victory”, “thumbs up”, and assorted rude gestures (often 

culturally specific).  

5) Sign languages: Linguistic systems, such as American Sign Language, which are well defined.  

Another classification of gestures is depicted in Figure 1 and was defined in [2].  

 

Figure 1. Classification of gestures proposed in [2] with examples for each gesture type 

It is important to note that most of these gestures are not used for communicating by people with PMLD. 
Nevertheless, they are described as part of a general gesture recognition system, which is the base of this 
project approach. 
 

Ninety percent of the gestures found in human iterations are unconscious or spontaneous (gesticulation in 
Kendon’s Continuum), which accompanies speech in communicative situations. Despite this importance of 
spontaneous gesture in normal human-to-human interaction, most research to date in human-computer 
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interaction (HCI), and most virtual environment technology, focuses on emblems and sign languages, where 
gestures tend to be less ambiguous, less spontaneous and natural, more learned, and more specific of the 
culture. The computer science community mostly has attempted to integrate emblematic gestures (e.g. the 
thumbs up gesture, or putting one's palm out to mean stop), that are employed in the absence of speech, 
and emotional facial displays (e.g. smiles, frowns, looks of puzzlement) [3].  

Some gestures have both static and dynamic elements, where the pose is important in one or more of the 
gesture phases; this is particularly relevant in sign languages. When gestures are produced continuously, 
each gesture is affected by the gesture that precedes it, and possibly, by the gesture that follows it. There 
are several aspects of a gesture, which may be relevant and therefore may need to be represented 
explicitly in computer vision systems. Four aspects of a gesture were defined in [4], which may be 
important to its meaning:  

(a) Spatial information – where it occurs, locations a gesture refers to;  

(b) Pathic information – the path which a gesture takes;  

(c) Symbolic information – the sign that a gesture makes;  

(d) Affective information – the emotional quality of a gesture.  

Because gestures are highly variable, from one person to another and from one example to another with a 
single person, it is essential to capture the essence of the gesture – its invariant properties – and use this to 
represent the gesture. Besides the choice of representation itself, a significant issue in building gesture 
recognition systems is how to create and update the database of known gestures [5]. In general, a system 
needs to be trained through some kind of learning, there is often a tradeoff between accuracy and 
generality – the more accuracy is desired, the more unspecific training is required. In addition, systems may 
be completely trained when in use, or they may adapt over time to the current user. 

Static gesture or pose recognition can be accomplished using template matching, geometric feature 
classification, neural networks (NNs), or other standard pattern recognition techniques to classify pose. 
Dynamic gesture recognition, however, requires consideration of temporal events. This is typically 
accomplished by using techniques such as time-compressing templates, dynamic time warping, hidden 
Markov models (HMMs) and Bayesian networks. 

Currently, computer vision systems for recognizing gestures look similar. The components of a gesture 
recognition system are: 

 
 

Figure 2. Gesture recognition system stages [6]. 

 Figure  SEQ Figure \* ARABIC 2. Components of a gesture recognition system 
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Vision-based interfaces use one or more cameras to capture images, at a frame rate of 30Hz or more, and 
interpret those images to produce visual features that can be used to interpret human activity and 
recognize gestures. Typically, the camera locations are fixed in the environment, although they may also be 
mounted on moving platforms or on other people.  

Unlike sensors worn on the body, vision approaches to body tracking have to contend with occlusions. 
From the point of view of a given camera, there are always parts of the user’s body that are occluded and 
therefore not visible – e.g., the backside of the user is not visible when the camera is in front. More 
significantly, self-occlusion often prevents a full view of the fingers, hands, arms, and body from a single 
view. Multiple cameras can be used, but this adds correspondence and integration problems. The occlusion 
problem makes full body tracking difficult, if not impossible, without a strong model of body kinematics and 
perhaps dynamics.  

Vision-based systems for gesture recognition vary along a number of dimensions, most notably [6]: 
 

● Number of cameras – More than one, combining different types, like early (stereo) or late (multi-
view).  

● Speed and latency – Considering if the system is real-time (i.e., fast enough, with low enough 
latency, to support interaction) or not.  

● Structured environment – Restrictions on the background, the lighting, the speed of movement, 
etc. 

● User requirements – If the user wear anything special (e.g., markers, gloves, long sleeves) 
or anything disallowed (e.g., glasses, beard, rings), etc.  

● Primary features – The kind of low-level features computed (edges, regions, silhouettes, moments, 
histograms).  

● Two- or three-dimensional representation.  
● Representation of time – The temporal aspect of gesture represented and used in recognition (e.g., 

via a state machine, dynamic time warping (DTW), HMMs, time-compressed template).  
 
The gesture recognition approaches can be classified into three major categories: (a) model based, (b) 
appearance based and (c) motion based. Model based approaches focus on recovering three-dimensional 
model parameters of articulated body parts. Appearance based approaches use two–dimensional 
information such as gray scale images or body silhouettes and edges. Motion based approaches attempt to 
recognize the gesture directly from the motion without any structural information about the physical body. 
In all these approaches, the temporal properties of the gesture are typically handled using DTW or 
statistically using HMMs. 
 
Static gesture or pose recognition can be accomplished by a straightforward implementation of using 
template matching, geometric feature classification, neural networks, or other standard pattern 
recognition techniques such as parametric Eigen space to classify pose. Dynamic gesture recognition 
requires consideration of temporal events, typically accomplished by using techniques such as time –
compressing templates, DTW, HMMs, and Bayesian networks. 
 
Body gestures recognition includes tracking full or partial body motion (e.g. movement of waist or chest, 
shoulder shrug etc.), recognizing body gestures (postural shifts, angular distance, upright position with 
ankles locked etc.), and recognizing human activity. Activity may be defined over a much longer period than 
what is normally considered a gesture; for example, two people meeting in an open area, stopping to talk 
and then continuing on their way may be considered a recognizable activity.  
 
A taxonomy of motion understanding was proposed in [7], in terms of: 
 

● Movement – the atomic elements of motion. 
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● Activity – a sequence of movements or static configurations. 
● Action – high-level description of what is happening in context. 

 
Most research to date has focused on the first two levels. 

In order to observe or analyze the characteristics of human motion and verify or evaluate the developed 
algorithm and its application system, a gesture database systematically constructed in carefully controlled 
environment is indispensable. In [5], a full-body gesture database was collected with 2D video data and 3D 
motion data of 14 normal gestures, 10 abnormal gestures and 30 command gestures for 20 subjects. 

In addition, these systems also need a 3D human body model to represent and recognize the motion over 
the detected human body. Normally, these models consist of segments, which represent all the parts of the 
body. In order to establish all the possible movements of the human body, a hierarchical system is created, 
which indicates the base position of each segment and the 3D translation and rotation difference between 
adjacent frames at each segment. This model automatically extracts the skeleton to classify seven human 
actions: standing, walking, running, jumping, falling, lying and sitting [8].    

Systems that analyze human motion in virtual environments may be quite useful in medical rehabilitation 
and athletic training. For example, Extreme Motion Studio is an application that provides full body motion 
detection from a 2D webcam. The tool permits create care plans, insurance requirements, stroke 
rehabilitations, etc.  
Recent studies use deep learning for detecting pose of human bodies in 2D images. In particular, a real time 
algorithm to efficiently detect the 2D pose of multiple people in images was presented in [9] based on the 
previous pose detection algorithms proposed in [10]. The approach uses a nonparametric representation to 
learn to associate body parts with individuals in the image. The architecture encodes global context, 
allowing a greedy bottom-up parsing step that maintains high accuracy while achieving real time 
performance, irrespective of the number of people in the image. The architecture is designed to jointly 
learn part locations and their association via two branches of the same sequential prediction process. Same 
approach was followed in [11] for detecting hand motion in images. The result of these studies is the 
OpenPose system, which is able to efficiently detect 18 key points of human bodies, 2x21 key points of 
hands and 70 key points of faces in 2D videos. In the same line, DeepEyes algorithm [12] is a deep learning 
methodology for different uses in cases of video recognition, like automotive industry, banks, gaming 
industry, health, smart home, marketing, security, etc.  

Analysis, recognition and synthesis of natural gestures are still an ongoing research.  An extensive 
evaluation of convolutional neural networks (CNNs) on general video classification is provided by [13] using 
the Sports-1M dataset. They compare different frame fusion methods to a baseline single-frame 
architecture and conclude that their best fusion strategy only modestly improves the accuracy of the 
baseline.  In [14], Neverova et al. present an extended overview of their winning solution for the ChaLearn 
LAP 2014 gesture recognition challenge and achieve a state-of-the-art score on the Montalbano dataset. 
They propose a multi-modal ‘ModDrop’ network operating at three temporal scales and use an ensemble 
method to merge the features at different scales. They also developed a new training strategy, ModDrop, 
which makes the network’s predictions robust to missing or corrupted channels. Temporal ordering models 
have also been applied in the context of complex activity recognition [15]. They mainly focus on inferring 
composite activities from predefined, semantically meaningful, basic-level action detectors. A 
representation for events is presented that encodes statistical information of the atomic action transition 
probabilities using a HMM. 

Achieving accurate, efficient and real-time systems is an extremely complex task. The latest works on 
gesture recognition can be found in the IEEE Face and Gesture Recognition Conference held every two 
years. 
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2.2 FACIAL EXPRESSION RECOGNITION  

Facial expressions are the facial changes in response to a person’s internal emotional states, intentions or 

social communications. From a computer vision point of view, facial expression analysis refers to computer 

systems that attempt to automatically analyze and recognize facial motions and facial feature changes from 

images.  

The accomplishments in the related areas such as psychological studies, human movement analysis, face 

detection, face tracking, and recognition make the automatic facial expression analysis possible. Automatic 

facial expression analysis can be applied in many areas such as emotion and paralinguistic communication, 

clinical psychology, psychiatry, neurology, pain assessment, lie detection, intelligent environments, and 

multimodal HCI. 

Facial expression analysis includes both measurement of facial motion and recognition of expression. The 
general approach to automatic facial expression analysis (AFEA) consists of three steps: face acquisition, 
facial data extraction and representation, and facial expression recognition. 
 
 
 

 

 
Face acquisition is a processing stage to automatically find the face region in the input images. 
 
The acquisition of faces and facial features from an arbitrary uncontrived image is a critical precursor to 
recognition. A robust scheme is needed to detect the face as well as determine its precise placement to 
extract the relevant data from an input image. This is necessary to properly prepare the image's 2D 
intensity description of the face for input to a recognition system. This detection scheme must operate 
flexibly and reliably regardless of lighting conditions, background clutter in the image, multiple faces in the 
image, as well as variations in face position, scale, pose and expression. The geometrical information about 
each face in the image that we gather at this stage will be used to apply geometrical transformations that 
will map the data in the image into an invariant form. By isolating each face, transforming it into a standard 
frontal mug shot pose and correcting lighting effects, it should be limited the variance in its intensity image 
description to the true physical shape and texture of the face itself. The boosted cascade with simple 
features proposed in [16] becomes the most popular and effective design for practical face detection. The 
simple nature of the features enable fast evaluation and quick early rejection of false positive detections. 
Meanwhile, the boosted cascade constructs an ensemble of the simple features to achieve accurate face vs. 
non-face classification. The original Viola-Jones [16] face detector uses the Haar feature, which is fast 
to evaluate yet discriminative enough for frontal faces. A number of improvements to the Viola-Jones face 
detector have been proposed in the past decade. Most of them follow the boosted cascade framework 
with more advanced features. 
However, much more reliable solutions exist nowadays based also on a method invented in 2005 called 
Histogram of Oriented Gradients (HOG) [17]. 
 
After that, the next step is to extract and represent the facial changes caused by facial expressions.  In facial 
feature extraction for expression analysis, there are mainly two types of approaches: geometric feature-
based methods and appearance-based methods. The geometric facial features present the shape and 
locations of facial components (including mouth, eyes, brows, nose, etc.). The facial components or facial 
feature points are extracted to form a feature vector that represents the face geometry. When the single 
facial features are hardly resolved in detail, implies that the overall geometrical configuration of the face 
features is sufficient for discriminations. The overall configuration can be described by a vector or 
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numerical data representing the position and size of the main facial features: eyes and eyebrows, nose and 
mouth. This information can be supplemented by the shape of the face outline. Face recognition, although 
difficult, presents a set of interesting constraints that can be exploited in the recovery of facial features. 
The first important constraint is bilateral symmetry. Another set of constraints derives from the fact that 
almost every face has two eyes, one nose, and one mouth with a very similar layout. Although this may 
make the task of face classification more difficult, it can ease the task of feature extraction. 
 
With appearance-based methods, image filters are applied to either the whole-face or the specific regions 
in a face image to extract a feature vector. These feature extraction methods extract novel features (e.g. 
holistic features) from the initial representations. They map an input representation onto a lower 
dimensional space to discover a latent structure from the representation. This transformation can be non-
adaptive or adaptive (learnt from training data). The most popular non-adaptive transformation is the 
discrete cosine transformation (DCT) whereas the most popular adaptive transformation is principal 
component analysis (PCA). PCA computes a linear transformation that aims at extracting decorrelated 
features out of possibly correlated features. Under controlled head-pose and imaging conditions, these 
features capture the statistical structure of expressions efficiently PCA is used by many systems including 
the winner of the Audio/Visual Emotion Challenges (AVEC) continuous challenge that consisted of 
evaluating dimensional affect models. 
A supervised alternative to the unsupervised PCA is linear discriminant analysis (LDA). LDA uses label 
information to learn how to discriminate between differently labelled representations, and group similarly 
labelled representations. LDA can handle more than two classes as it considers only whether two arbitrary 
samples have the same or different labels. Most affect recognition systems train LDA using multiple classes 
simultaneously [18]. 
Alternative training schemes are also proposed. Kyperountas et al. [19] proposed a scheme where multiple 
LDA models are involved, and each model discriminates between a pair of classes. 
 
Depending on the different facial feature extraction methods, the effects of in-plane head rotation and 
different scales of the faces can be removed by face normalization before the feature extraction or by 
feature representation before the step of expression recognition. 

Facial expression recognition is the last stage of AFEA systems. The facial changes can be identified as facial 
action units (AUs) or prototypic emotional expressions.  Studies of automatic facial expression recognition 
have made a significant progress in the last two decades due to the advances in machine learning and 
computer vision techniques. The current research can be classified in two types: the recognition of the 
appearance of facial actions and the recognition of the emotions conveyed by the actions.  

The first set of systems usually relies on the facial action coding system (FACS) [20]. FACS consists of 44 
facial AUs, which are codes that describe certain facial configurations. Thirty AUs are anatomically related 
to contraction of a specific set of facial muscles and they are shown in Figure 4. 
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Figure 4. FACS action units (AU) 

The anatomic basis of the remaining 14 is unspecified and they are referred to as miscellaneous actions in 
FACS (Figure 5).  
 

 
Figure 5. Miscellaneous action units 

Facial expression can be defined as the combination of these AUs. Figure 6 shows some examples.  
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Figure 6. Some examples of combination of FACS action units 

The production of a facial action has a temporal evolution, which plays an important role by interpreting 
emotional displays. The temporal evolution of an expression is typically modeled with four temporal 
segments: neutral, onset, apex and offset. Neutral is the expressionless phase with no signs of muscular 
activity. Onset denotes the period during which muscular contraction begins and increases in intensity. 
Apex is a plateau where the intensity usually reaches a stable level, whereas offset is the phase of muscular 
action relaxation.  

AUs and temporal segments are properly analyzed in psychology and their recognition enables the analysis 
of sophisticated emotional states such as pain [21] and helps distinguishing between spontaneous and 
posed behavior [22]. By this way, it is possible to define new different gestures or expressions made by 
people with PMLD. For that reason, the state of the art of the emotion recognition classifiers is explained 
below. The systems that recognize emotions consider basic or non-basic emotions. Basic emotions refer to 
the affect model developed by Ekman et al. [20], who argued that the production and interpretation of 
certain expressions are hard-wired in our brain and are recognized universally. The emotions conveyed by 
these expressions are modeled with six classes: joy, sadness, surprise, fear, anger and disgust. Basic 
emotions are believed to be limited in their ability to represent the broad range of everyday emotions. 
More recently, researchers considered non-basic emotion recognition using a variety of alternatives for 
modelling non-basic emotions. One approach is to define a limited set of emotion classes (e.g. relief, 
contempt). Another approach, which represents a wider range of emotions, is continuous modelling using 
affect dimensions, like arousal, valence, power and expectation. The above-listed affect models were 
evaluated in a number of affect recognition competitions. The facial expression recognition analysis (FERA) 
[23] focus on evaluating posed expressions, near-frontal recordings, or both. This makes it hard to tell how 
existing expression recognition approaches perform under conditions where faces appear in a wide range 
of poses (or camera views), displaying ecologically valid expressions. The main obstacle for assessing this is 
the availability of suitable data, and the challenge proposed here addresses this limitation. The AVEC  [24] 
aimed at comparison of multimedia processing and machine learning methods for automatic audiovisual 
depression and emotion analysis. 

Except from a small number of unsupervised knowledge-driven approaches, all affect recognizers use 
machine learning techniques. As any machine learning application, the performance of an affect 
recognition system depends on the quality and quantity of training data as well as the selected machine 
learning model. 

In the case of supervised machine learning systems, the training data should be properly labelled. Labelling 
data is a challenging and laborious task, particularly for spontaneously displayed expressions and emotions. 
The annotation of spontaneously displayed emotions is challenging mainly due to the subjective perception 
of emotions, which is often addressed by using multiple annotators.  Spontaneous AUs require frame-by-
frame annotation by experts, and unlike posed AUs, where the subjects are instructed to display a 
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particular (usually single) AU, the annotator has to deal with an unknown facial action which may be a 
combination of AUs, as occurring in this project. 

Concerning the output of this kind of systems, affect recognition approaches give a label of an emotion or 
facial action. In addition, recent studies provide also the intensity of the displayed emotion or facial action. 
Meanwhile, for automatic unit recognition, the output can be enhanced significantly by providing the 
temporal phase of the displayed AU. Besides, several studies recognize combinations of AUs rather than 
individual AUs in order to render the output more suitable to spontaneous behavior [25].  

The main challenges in automatic facial actions recognition are head-pose variations, illumination 
variations, registration errors, occlusions and identity bias. Spontaneous affective behavior often involves 
head-pose variations, which need to be modeled before measuring facial expressions. Illumination 
variations can be problematic even under constant illumination due to head movements. Registration 
techniques usually yield registration errors, which must be dealt with to ensure the relevance of the 
representation features. Occlusions may occur due to head or camera movement, or accessories such as 
scarves or sunglasses. Dealing with identity bias requires the ability to tell identity-related texture and 
shape cues apart from expression-related cues for subject independent affect recognition. While being 
resilient to these challenges, the features of a representation shall also enable the detection of subtle 
expressions [25]. 

The most recent facial expression recognition systems can be categorized in terms of basic emotion, AU or 
non-basic emotion recognition systems. 

Basic emotion recognition has mostly been analysed on posed data, and systems have been evaluated 
using the average recognition rate or average area under the curve metrics. Although the recognition of 
posed basic emotions is considered as a solved problem, it is still used for proof of concept of spatial [26] 
and spatio-temporal representations [27], [28] as well as novel statistical models [29]. 

AU recognition has been studied both for posed and spontaneous data. The problem is typically formulated 
as a detection problem and approached by training a two-class (positive vs. negative) statistical model for 
each AU. In this setting, results are reported using metrics such as Area Under the Curve, F1-measure or 
2AFC score [30], [31]. Two well-studied non-basic emotion recognition problems are dimensional affect 
recognition and pain recognition. In [32], where affect recognition has been performed in terms of 
quantised affect dimensions, performance has been measured as average recognition rate on four affect 
dimensions, whereas [33] and [34] considered continuous affect recognition and evaluated performance 
using the Pearson’s correlation— [34] considered also the recognition of depression and evaluated 
performance using the mean absolute error and the root mean square error. 

2.3 VOCALIZATION RECOGNITION 

Vocalization recognition aims at detecting instances of non-linguistic sounds produced vocally by a person 
under surveillance. Such sounds include laughing, wailing, heavy breathing etc. Similarly to other media of 
expression (i.e. facial, gestural), not all of these sounds have to correspond to interpretable messages 
communicated by a particular person with PMLD (however, it is not the task of the vocalization module to 
decide which of the event types are meaningful). 

A classical approach to the recognition problem would be to (1) perform signal parametrization for 
uniformly spread short-time audio frames, usually by strict mathematical transformations (e.g. Cepstral 
Coefficients every 10ms for overlapping windows of 25ms), (2) then feed such streams of data into a 
chosen type of a statistical process-modeling framework (e.g. based on Hidden Markov Models). 
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A resurgence of neural network models, observed over last 6-7 years in speech and image recognition in 
particular, is leaving an imprint on vocalization and sound event recognition as well. Some of those most 
recent papers represent what can be seen as hybrid approaches, ie. fusing connectivist feature extraction 
with more ‘classical’ detection frameworks, while some present holistic end-to-end solutions. 

The methods are quite diverse. The current project will be attempting to propose a hybrid solution, that 
will combine a modern machine learning approach with a classical statistical framework. 

2.3.1 SIGNAL PROCESSING AND STATIC FEATURES 

The following papers provide important background on acoustic signal processing and modelling of short-
time audio features: 

In [35], the authors investigate the applicability of various subsets of audio features, aiming at automatic 
detection of non-linguistic sounds from vocalizations. Subsets of features were formed based on ranking 
the relevance and the individual quality of several audio features. During the audio parameterization 
process, every input utterance is converted to a single feature vector. Next, a subset of this feature vector 
is fed to a classification model, which aims at estimation of the unknown sound class. 

The development of a gender-independent laugh detector with the aim to enable automatic emotion 
recognition is described in [36]. Different types of features (spectral, prosodic) for laughter detection were 
investigated using different classification techniques such as Gaussian Mixture Models (GMMs), Support 
Vector Machines (SVMs) and Multi Layer Perceptron (MLP), often used in language and speaker 
recognition. Acoustic measurements showed differences between laughter and speech in mean pitch and 
in the ratio of the durations of unvoiced to voiced portions, which indicate that these prosodic features are 
indeed useful for discrimination between laughter and speech. 

In [37], the authors propose a classification method of ten types of short-time sound events based on 
probabilistic distance SVMs. Parametric approach of characterizing sound signals using the distribution of 
the sub-band temporal envelope (STE), and kernel techniques for the Sub-band Probabilistic Distance (SPD) 
under the framework of SVM are studied. It is shown that generalized gamma modeling is well devised for 
sound characterization, and that the probabilistic distance kernel provides a closed form solution to the 
rapid calculation of divergence distance. 

The issue of cough detection using only audio recordings is addressed in [38], with the ultimate goal of 
quantifying and qualifying the degree of pathology for patients suffering from respiratory diseases, notably 
mucoviscidosis. A large set of audio features describing various aspects of the audio signal is proposed. 
These features are assessed in two steps. First, their intrinsic potential and redundancy are evaluated using 
mutual information-based measures. Secondly, their efficiency is confirmed relying on three classifiers: 
artificial neural network (ANN), GMM and SVM. The influence of both the feature dimension and the 
classifier complexity are also investigated. 

In [39], gammatone cepstral coefficients (GTCC) are investigated for cough recognition. The accuracy of 
GTCC comparing with mel-frequency cepstral coefficients (MFCC)  is evaluated on a designed cough dataset 
following a 10 fold cross-validation scheme. Considering the imbalance of that dataset, weighted SVM is 
applied as the base classifier. The results indicate that GTCC surpass MFCC in modeling cough signals. With 
combination of GTCC and MFCC, a better performance is achieved. This paper provides a better feature 
representation prototype in cough recognition. 

The work described in [40] (see below) compares two alternative acoustic front-end features: MFCC and 
perceptual minimum variance distortion less response (PMVDR). 
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The work presented in [41] describes algorithm development in support of a pilot study of  uberculosis 
patient coughing. Several signal-processing approaches to event detection and classification are presented, 
with eventual goal of development of a low-cost ambulatory cough analysis system. 

In [42] (see below), deep neural networks (DNNs) are applied to model acoustic features in cough 
detection. 

2.3.2 EVENT MODELING AND DETECTION 

The following references were found to focus on acoustic event modeling and detection, in particular 
methods using HMMs. 

The proposal in [43] provides an examination of two methods for optimization of HMM configurations for 
better classification and recognition of nonverbal vocalizations within speech, like filled pauses, laughter, 
breathing, hesitation, etc. An in-depth analysis of the discussed methods is provided. 

The authors in [44] present an HMM-based automatic system for recognition of bird species from audio 
field recordings. It includes an improved unsupervised modelling of individual bird syllables and duration 
modelling. The acoustic signal is decomposed into isolated segments, each segment containing a temporal 
evolution of a detected sinusoidal component. Modeling of bird syllables is performed using HMMs. A set 
of syllables of bird vocalizations is discovered in an unsupervised manner by employing dynamic time 
warping and agglomerative hierarchical clustering. A novel iterative maximum likelihood procedure is used 
to train individual HMMs for syllables of each species. Modelling of the state duration is employed in a 
post-recognition stage by combining the likelihood of the acoustic and duration modeling. Evaluations 
demonstrate that the use of the proposed un-supervised iterative HMM training procedure and the 
duration modelling allow to build a system that recognizes bird species with high accuracy. 

Another research [45] proposes the use of HMMs to automatically detect cough sounds from continuous 
ambulatory recordings. The recognition algorithm follows a keyword-spotting approach, with cough sounds 
representing the keywords. The results suggest that HMMs can be applied to the detection of cough sounds 
from ambulatory patients. 

The research depicted in [42] also proposes using HMMs as a second stage of a two-step cough detection 
system (with DNNs applied to model acoustic features). 

An important requirement that unsupervised approaches based on HMMs must satisfy is the capability of 
automatically determining a number of distinct states. This can be achieved, for example, by running GMM-
based clustering over all audio data and selecting the number of states based on the number of 
components of the GMM. An unsupervised algorithm for learning a finite mixture model from multivariate 
data is proposed in [46]. In addition, the presented method, unlike the standard expectation maximization 
(EM) algorithm, does not require careful initialization of the parameters.  

The work performed in [47] describes an effective process for automated detection and classification of 
frequency-modulated sounds from birds, crickets, and frogs that have a narrow short-time frequency 
bandwidth. An algorithm is provided for extracting these signals from background noise using a frequency 
band threshold filter on spectrograms. Feature vectors are introduced and demonstrated to accurately 
model the resultant bioacoustics signal with HMMs. Additionally, sequences of sounds are successfully 
modeled with composite HHMs, allowing for a wider range of automated species recognition. 

An unsupervised approach [40] is focused on detection of human scream vocalizations from continuous 
recordings in noisy acoustic environments. The proposed solution is based on signal segmentation, which 
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employs i.a. Bayesian Information Criteria and mean distances. The performance of proposed system was 
compared using two alternative acoustic front-end features (i) MFCC and (ii) PMVDR. 

In [48], the authors describe an audio-based video surveillance system, which automatically detects 
anomalous audio events in a public square, such as screams or gunshots, and localizes the position of the 
acoustic source (so that a video camera can be steered consequently). The system employs two parallel 
GMM classifiers for discriminating screams from noise and gunshots from noise, respectively. Each classifier 
is trained using different features, chosen from a set of both conventional and innovative audio features. 
The location of the acoustic source, which has produced the sound event, is estimated by computing the 
time difference of arrivals of the signal at a microphone array and using linear-correction least square 
localization algorithm. 

A similar problem and solutions are presented in [49]. 

The proposal in [50] also deal with audio events detection in noisy environments for a multimedia 
surveillance application, particularly sounds produced by gunshots. A novel detection approach 
is proposed, which offers a solution to detect abnormality in continuous audio recordings of public places, 
with focus on the robustness of the detection against variable and adverse conditions and the reduction of 
the false rejection rate. 

2.3.3 NEURAL NETWORKS  

While some overlap with previous subsections may occur, papers that use modern machine learning 
techniques are grouped here. 

In [51], the author introduce a novel tandem approach by integrating likelihood features derived from non-
negative matrix factorization (NMF) into Bidirectional Long Short Term Memory-Recurrent Neural Networks 
(BLSTM-RNNs) in order to dynamically localize non-linguistic events, i.e., laughter, vocal, and non-vocal 
noise, in highly spontaneous speech. This tandem architecture is compared to a baseline conventional 
phoneme-HMM-based speech recognizer. 

A study on  recognition of animal sounds, comparing dynamic and static classification by left-right and cyclic 
HMMs is presented in [52], RNNs with long short term memory (LSTM), and SVMs, as well as different 
features commonly found in sound classification and speech recognition. 

A NN-based method to automatically identify cough segments is proposed in [53]. Discarding other sounds 
such a speech or ambient noise, developed for a real-time cough identification technique in continuous 
cough monitoring systems. 

In the aforementioned [42], DNNs are applied to model acoustic features in cough detection. A two-step 
cough detection system is proposed based on DNNs and HMMs. Different configurations of DNNs are 
evaluated. Experimental results show that many of the DNN configurations outperform GMM. 

In [54], the authors present two different approaches of using DNNs for cough detection. A CNN and a RNN 
are implemented to address these problems, respectively. The effect of the network size parameters and 
the impact of long-term signal dependencies in cough classifier performance are also explored. 
Experimental results showed network architectures outperform traditional methods. 

2.3.4 OTHER METHODS 

Articles that do not clearly fit any previous category are listed below. 
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A method to detect oral snoring by extracting the acoustic properties of snoring sounds and using the k-
nearest network (KNN) classifier is described in [55].  

The research in [56] investigates the impact of narrow-band standard speech coders on the machine-based 
classification of paralinguistic cues (affective vocalizations) in clinical vocal recordings. In addition, it 
analyzes the effect of speech low-pass filtering by a set of different cut-off frequencies. 

In [57], several pitch and formant measures are used, as well as a multidimensional GMM discriminator to 
perform classification of utterances as approval, attentional bids, or prohibition. It finds that timbre or 
cepstral coefficients, as well as changes in pitch, are an important cue for affective messages. 

2.4 PHYSIOLOGICAL PARAMETERS MONITORING 

A number of studies exist that use physiological parameters to determine the psychological state of an 
individual. Because our target group are subjects that are not often capable of symbolic communication, 
determining their psychological state and their needs is important and would help both the subjects and 
their caregivers. We will attempt this using their physiological parameters such as heart rate (HR), heart 
rate variability (HRV), breathing rate (BR), etc. The following paragraphs describe the state-of-the-art 
approaches for all the steps that are required for determining the psychological state from physiological 
data. These steps are a) the reconstruction of physiological signals from sensor data, b) the calculation of 
physiological parameters from the physiological signals if this is not performed by the sensor device such as 
in the case of cameras and microphones, and finally c) the determination of the psychological state from 
the physiological parameters. 

2.4.1 RECONSTRUCTION OF PHYSIOLOGICAL SIGNALS 

We will first try to obtain the physiological signals that will be later used as a basis to determine 
the psychological state of the subjects. Many methods exist that return the physiological signals without 
any contact with the subject. Since camera, thermal camera and microphone are already used in the 
project for gesture recognition, facial expression recognition and vocalization recognition, we decided to 
focus on methods that use these sensors to retrieve the physiological signals. Examples of methods that 
use data from cameras and microphones are described below. Nevertheless, there also exist approaches 
that use other noncontact sensors for retrieving physiological signals. For example, heartbeats of the 
subjects can be detected using a Doppler radar (a specialized device that uses the Doppler effect to 
measure the velocity of objects at a distance) [58] [59] [60], HR and respiration rate can be measured using 
Kinect [61], etc. These approaches will not be used since such technologies are not mature enough to 
justify the usage of these additional sensors. 

It should be noted that the non-contact methods for retrieving the physiological signals using cameras and 
microphones are also new and still in development. Consequently, their results might not be satisfying 
enough. For that reason, we will also use contact sensors (i.e., wristbands) to collect physiological data, 
which is a reliable data collection approach. The collected data will be used for the evaluation of 
noncontact approaches. In addition, if the noncontact approaches will not produce satisfactory results, the 
contact approaches (including the contact sensors) will also be included in the final project solution. On the 
other hand, if non-contact approaches will produce good results, the contact approaches and sensors will 
not be needed.  

The following subsections describe the state-of-the-art approaches for collecting physiological data using 
sensors that are relevant for INSENSION. More precisely, they describe approaches for contact (wristbands) 
and noncontact -red green blue (RGB) cameras, thermal cameras and microphones- sensors.    
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2.4.1.1 WRISTBANDS 

The most convenient method for obtaining the physiological signals in a non-clinical environment is using a 
wristband. There are many wristbands for measuring physiological signals, such as Empatica E4, Microsoft 
Band, Apple Watch, cheap AliExpress wristbands, etc. We will be using Empatica E4, since this is the most 
reliable wristband. Empatica has a light source to measure the variation in blood volume inside the tissue 
resulting in the photoplethysmogram (PPG), an infrared thermophile for measuring the skin temperature 
and an electro dermal activity (EDA) sensor to measure the constantly fluctuating changes in certain 
electrical properties of the skin. 

Although wristbands return reliable results, subjects need to wear them, which might cause increased 
stress. It is therefore preferable to use non-contact sensors for measuring the physiological signals. 

2.4.1.2 RGB CAMERAS 

Two main approaches are used in the camera-based methods. The first approach uses the same 
physiological phenomena as the wristbands do, i.e., it analyzes the variation in blood volume in the skin 
tissue to retrieve the PPG signal. As a light source, this approach uses the sunlight, which is less intense 
than the light source of the wristband. Consequently, this approach is very sensitive to different 
environment conditions. For example, if the environment is not properly lighted it might produce 
inconsistent results. To detect variations in blood volume, this approach analyzes the changes in RGB 
intensity of the skin pixels between two sequential video frames. The most basic way of retrieving the PPG 
signal is by calculating the average of the red, green and blue intensity of all the skin pixels over time [62]. 
Another approach consists of independent component analysis on the RGB data as color signals and use the 
most PPG-like resulting signal [63] [64]. Instead of independent component analysis, [65] uses principal 
component analysis to retrieve the PPG signal. Other approaches do not calculate the average of all skin 
pixels, but treat the skin pixels independently. For example, [66] tracks the variation of color in each skin 
pixel independently and afterwards chooses the most PPG-like signal. The method in [67] tracks the 
vibration of the color space of the skin pixels to retrieve the PPG signal. In [68] the basic color signals are 
used by a NN to reconstruct various physiological signals. The method in [69] amplifies all the color changes 
in the facial pixels to follow the blood flow in the head. Although the listed methods seem promising, an 
independent evaluation on a publicly available dataset showed that they are not precise enough to be used 
in real-world scenarios [70]. More precisely, this evaluation included three state-of-the-art methods for 
retrieving PPG from RGB camera video and the results show that there is low correlation between the 
reconstructed and true PPG. 

The second approach analyzes the small head movements that are induced by the pumping of blood into 
the head [71]. However, it should be noted that these small movements are very subtle and might not be 
recognized with a low quality camera.  

2.4.1.3 THERMAL CAMERAS 

Thermal camera recordings are used in many studies for analyzing stress, BR, HR, etc. These studies show 
that we can see small changes of the temperature each time the heart pumps blood into the major blood 
vessels. The PPG signal can be retrieved by analyzing these temperature changes [72]. In addition, by 
analyzing the hot air exhalation of the subjects we can measure their breathing rate [73]. 

Stress experienced by subjects can be determined by analyzing the temperature of various parts of the 
face. It has been shown that the nose, the corrugator (the region between the eyebrows) and the forehead 
respond to emotional and distressing stimuli [74]. Thermal imaging has also been used to classify cognitive 
workload of the subjects [75] [76]. 
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2.4.1.4 MICROPHONES 

Microphones will be used in INSENSION for vocalization recognition. Therefore, it would be convenient if 
they could be simultaneously used also for retrieving the physiological signals. However, this is a very 
challenging task and almost no research has been done in this direction. Nevertheless, a method for 
extracting the heart rate from vowel speech signals has been developed, which analyses the spectrogram 
of the /i:/ vowel [77]. However, this method cannot measure physiological signals when the subjects do not 
speak, or if the subjects have issues with symbolic communication as in the case of the INSENSION target 
group.   

2.4.2 CALCULATION OF PHYSIOLOGICAL PARAMETERS 

Most of the previously described methods retrieve the PPG signal that can used to calculate various 
physiological parameters. If the signal is clear enough, we can calculate the HR as well as the HRV 
by detecting the peaks in the signal [78]. There are also methods that estimate the breathing rate from the 
PPG signal [79] [80], as well as the blood pressure [81] [82]. 

2.4.3 DETERMINATION OF THE PSYCHOLOGICAL STATE 

The psychological state has been determined based on the physiological parameters in several studies. For 
example, the PPG signal can be used to determine the subject’s stress level [83] [84] [85]. However, these 
studies were done on stressful situations that were artificially created in laboratory conditions. In real-life, 
the subjects will probably not have such strong physiological responses to the stressful situations.  

Mental engagement was determined from electrocardiogram (ECG), BR, galvanic skin response (GSR), and 
skin temperature (ST) [86]. To this end, PCA and NNs were applied. The developed system was evaluated 
with various virtual-reality tasks that were performed by the subjects. 

Several studies focused on recognizing human emotions from physiological parameters [87]. During the 
evaluation, the emotions were typically induced, for example, by showing appropriate movies. Examples of 
induced emotions were happiness, fear, joy, anger, amusement and frustration, where each study focused 
only on a specific subset of them. Examples of used physiological parameters are blood volume pressure, 
GSR, ST, HR, and respiration rate [88]; GSR, ST, skin potential, skin resistance, skin blood flow, and 
instantaneous respiratory frequency [89]; GSR, HR, RR interval, and ECG [90]; and GSR, ECG, respiration 
rate and electromyography [91].  
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3 METHODS, MATERIAL AND THEIR REQUIREMENTS 

3.1 COLLECTED MATERIAL 

3.1.1 RECORDINGS 

3.1.1.1 TECHNICAL ASPECTS OF THE RECORDINGS 

To provide materials for further analysis and experiments, dedicated recording sessions for each of the six 

test persons have been organized in the following facilities: 

 “Orzeszek” kindergarten 

o Person A – male, 8 years, characteristics: Struge-Wender syndrome 

o Person F – male, 9 years, characteristics: cerebral palsy, epilepsy 

 “Zakątek” school 

o Person B – male, 11 years, characteristics: cerebral palsy, hypotonic form, quadriplegia, 

erectile pattern in the lower lombs 

o Person C – male, 14 years , characteristics: post-inflammatory hydrocephalus and 

implanted placental system after purulent meningitis with etiology of e-coli in the non-

infant period 

 “Kamyk” day care center for adults 

o Person D – female, 41 years, characteristics: significant intellectual disability, able to walk 

o Person E – female, 30 years, characteristics: cerebral palsy, hydrocephalus, epilepsy 

The recordings were taken in two phases, in the natural environment of those facilities, during person’s 

daily activities, e.g. meals and individual activities. These recording situations were structured in a specific 

way to trigger both communication behavior of different content (demand, comment, protest) and 

different inner states (pleasure, displeasure), which is described in more detail in the deliverable D1.1. 

During the first phase, a basic setup described below has been used. During the second phase only 4K 

cameras have been used. The second phase focused on catching situations that were not recorded during 

the first stage. 

Recording setup 

The basic recording setup consists of seven cameras and two or three microphones, depending on specific 

needs, and includes: 

 Three 4K cameras: Panasonic HC-x1000. 

 Two 3D Full HD cameras: JVC GY-HMZ1ED and Sony HDR-TD-10. 

 Two IR cameras:  Flir T420 and Flir T620. 

 One Asden SGM-2X microphone. 

 Handy recorder ZOOM H6 with stereo microphone MSH-6 and shotgun microphone Sennheiser 

ME67. 

The goal of the recordings was to gather video streams from two perspectives, according to Figure 7. In the 

first perspective, the cameras are placed in front of the recorded person. The second perspective was a 

lateral one (left or right) in which cameras record the person from the side. Additionally, one camera has 

been placed in the corner providing a 45-degree angle view on the scene. All cameras have been placed as 

close to the walls as possible to check whether walls would be good mounting points for the target 

infrastructure in terms of the distance and the ability to recognize non-symbolic signal. 
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Each perspective has been recorded by three different types of cameras placed side by side. Such a set 

consisted of a 4K camera, 3D Full HD camera and an infrared (IR) camera. The aim was to provide different 

types of materials which may be usable for observation and detection of different behaviors, and to check 

what kind of recording is most useful in the context of the project’s main goal. The idea of using IR and 3D 

cameras was to check whether they could provide additional useful information, unavailable on a standard 

RGB camera stream – through a thermographic stream and 3D spatial movement, respectively. All cameras 

recorded the whole scene with a person with PMLD and their caregiver, as well as their surroundings to 

observer both the context and interactions. 

The directional microphones were usually placed in  front of the recorded person (two microphones) and 

the side of the person, mounted on a camera (one microphone). The microphones have been placed at 

different heights to check whether the distance from the floor is a factor influencing audio results. The 

stereo microphone (MSH-6), placed at the height ~1.2 meter above floor  has been recorded the general 

sound background taking into account the direction of the sound source, whereas the Sennheiser ME67 has 

been placed on the tripod ~ 2 meters above floor. The purpose of that microphone was to record higher 

quality sounds related to vocalization of the person with PMLD as well as commands and comments of 

caregivers. 

As a result, a set of video streams has been collected for further analysis: 

 3840x2160 pixels resolution, 25 frames per second (fps) high quality video streams. 

 1920x1080 pixels resolution, 25 fps 3D video streams. 

 320x240 pixels resolution, 30 fps infrared video streams. 

 640x480 pixels resolution, 15 fps infrared video stream. 

 

Figure 7. Basic recording setup 

Recorded sound streams were: 

 Mono, sampling rate 48kHz, depth 24 bits. 
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 Stereo, sampling rate 48 kHz, depth 24 bits. 

 

Postproduction 

Following the above-described sessions, the most promising recordings, from the project point of view, 

have been chosen for additional processing. 

In the first step, the audio from the recordings has been translated to English in the form of subtitles. 

In the next step, recordings related to a particular person, but recorded from different perspectives, have 

been synchronized in time and converted into a mosaic view. The synchronization of those video streams 

gives the ability to analyze the same scene from different perspectives in exactly the same point in time. In 

order to simplify the analysis process, final mosaic views have been created. According to specific needs 

and requirements, the mosaics consisted of two to four streams synchronized and presented together. 

In the final step, subtitles have been embedded into the mosaic videos. Recordings created this way (see 

Figure 8) have been used as an input for an annotation process. 

 

Figure 8. Final mosaic example 

3.1.1.2 TECHNICAL ASPECTS OF THE ANNOTATION PROCESS 

In the course of data collection, several videos have been recorded, which show the test persons 

in different communication situations expressing various inner states. These situations were specifically 

structured in a standardized procedure based on [92] and [93].  

In the next step, these recordings needed to be analysed and annotated for two reasons:  

(1) To recognize meaningful behaviour signals that express the triggered communication content and  

(2) To provide a foundation for training the technological models.  

The annotation process was coordinated by a specifically created working group, which consisted 

of pedagogical and technological specialists of the project. In a first step, the software ELAN (EUDICO 
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Linguistic Annotator)1 was chosen, an annotation tool for audio and video recordings that uses a tier-based 

structure. As a free and open source software developed at the Max Planck Institute for Psycholinguistics in 

Nijmegen, The Netherlands, and applied in humanities and social sciences research, it provides a procedure 

in three steps by defining tier types and tiers, selecting time intervals and entering annotations. ELAN offers 

both the use of time sampling TS2 [94] and event sampling ES3 [95]. 

In addition, an annotation guideline was created in a detailed process of adjustment to clarify which 

aspects are pedagogically meaningful and at the same time technologically realisable. The result 

is a guideline based on the paper-based assessment developed earlier in the project in order to increase 

the compatibility of these two databases (see Appendix A). The guideline is divided into three areas: The 

area Communication and Inner States should be triggered on purpose as mentioned above and is 

recognisable by means of the area Behaviours, which lists a variety of behaviour signals of the test person. 

The area Context needs to be annotated due to its possible impact on both Behaviour and Communication 

and Inner States.  

These areas are split up into several main categories, subcategories and, finally, nearly 100 tiers with an 

additional explanation of the type of sampling. Exemplarily, Table 1 shows an extract of the area Behaviours 

and two of its main categories, Vocalization and Facial Expressions. Facial Expressions has all in all three 

different sub categories of which Appearance of Eyes is shown in the example with a further differentiation 

into several tiers, inter alia, eye contact or eyebrow movement. These tiers are integrated one-to-one into 

ELAN and should only be annotated by using time sampling when the end-user shows the specific 

behaviour signals within the intervals of three seconds. In contrast to Facial Expression, Vocalizations is 

main category and tier at the same time due to the higher complexity of describing vocalizations with 

words. For that reason, the technological experts of the working group proposed the use of audio samples 

to ensure a precise distinction of the different vocalizations. This way, aspects like pitch or volume, which 

are not assessable objectively can be analysed precisely by means of technology.  

Table 1. Extract of the Annotation Guideline 

Area 
Main  

Category 
Subcategories Tiers TS ES 

2. Behaviours 

Vocalizations  X 

Facial Expressions 2.1.1. Appearance of Eyes 

- eye contact  
- widened eyes  
- closed eyes  
- sleepy eyes 
- “smiling” eyes 
- winking  
- tears  
- eyebrow movement 
- frown 

X  

 

Before the actual process of annotating was started, relevant sequences needed to be chosen, in which the 

test persons show all kind of communication contents and inner states mentioned above in a clear, 

meaningful and representative way. In addition to a briefing and training session for all annotators, regular 

meetings, constant exchanges, reciprocal checks and feedback both within the annotators and in 

                                                           
1 

Nijen Twilhaar, J., & van den Bogaerde, B. (2016). Concise Lexicon for Sign Linguistics. Amsterdam: John Benjamins 
Publishing Company 
2
 TS means to analyze the recording in preset regular intervals (e.g., every five seconds or every hour), in which the 

shown behavior is annotated. 
3
 Using ES, only the focused behaviour is annotated when it occurs, with full length without defining intervals. 
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combination with the technological partners provided a quality of the time-consuming annotation work as 

high as possible.  

3.1.2 PHYSIOLOGICAL PARAMETERS 

Besides video and audio data, we will also collect physiological data with wearable, i.e., contact sensors. 
However, it should be noted that the main goal would be the retrieval of the same set of physiological data 
from noncontact sensors, i.e., cameras. The contact approaches with wearable sensors will be included in 
the final project solution only if the noncontact approaches will not produce satisfactory results. 

Based on our experience, we selected the Empatica E4 wristband for the collection of physiological 
parameters, which is currently the most reliable physiological-data collecting wristband. 

Empatica E4 has the following sensors: 

 PPG sensor that measures blood volume pulse, from which heart rate and heart rate variability 
can be derived. 

 3-axis accelerometer that captures motion-based activity. 

 EDA/GRS sensor that measures the constantly fluctuating changes in certain electrical 
properties of the skin. 

 Infrared thermopile that reads peripheral skin temperature. 

It also has the event mark button that enables to tag the events, i.e., annotate the collected data. 

Empatica enables to retrieve the following data: 

 EDA/GSR. 

 Blood volume pulse (BVP). 

 Acceleration. 

 HR. 

 Temperature. 

The collected physiological data are managed as follows: 

 They can be stored in the wristband’s internal memory that allows to record for up to 60 hours 
with five s. synchronization resolution. 

 They can be transferred from the wristband to the Empatica cloud platform via USB. 

 The data on the Empatica cloud can be downloaded in the CSV format. 

 The data can be transferred in real time from the wristband to the connected device via 
Bluetooth. In this case, the data are automatically uploaded to the Empatica cloud platform 
from the connected device. 

 E4 software development kit (SDK) enables to develop interfaces for transferring the data from 
the wristband to the Android/ iOS user applications. 

3.2 GESTURE AND FACIAL EXPRESSION RECOGNITION SYSTEMS 

3.2.1 PRE-PROCESSING OF THE MATERIALS 

The material required for developing the recognition systems are the recordings with their correspondent 

annotations. The original material needs to be previously processed in order to generate the dataset for 

training and testing the computer vision algorithms.  
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The pre-processing step consists on extracting the slots of the video in which the person with PMLD 

appears doing a certain gesture or facial expression. After the annotation process for each recording, a file 

with tiers and the correspondent time intervals annotated is generated. The format of the file is shown in 

Figure 9.  

 

Figure 9. Format of the annotation file 

A simple tool was developed in order to automatically extract the correct slot of video for each annotated 

facial expression or gesture. These classified slots of videos were used to train and test the recognition 

algorithms.  

3.2.2 METHODS 

The goal of the recognition system is to detect gesture and facial expressions using computer vision 

techniques by means of the OpenPose library [96]. 

OpenPose is a library for real-time multi-person key point detection and multi-threading written in C++. 

OpenPose represents the first real-time system to jointly detect human body and hand key points on single 

images. In addition, the library’s computational performance on body key point estimation is invariant to 

the number of detected people in the image. 

The main functionality of the library is detailed as follows: 

 Multi-person 15 or 18-keypoint body pose estimation and rendering. Running time invariant to 

number of people on the image. 

 Multi-person 2x21-keypoint hand estimation and rendering. Note: In this initial version, running 

time linearly depends on the number of people on the image. 

 Flexible and easy-to-configure multi-threading module. 

 Image, video, and webcam reader. 

 Able to save and load the results in various formats (JSON, XML, PNG, JPG, etc.). 

 Small display and user interface for simple result visualization. 

 Functionality is wrapped into a simple-to-use OpenPose Wrapper class. 

3.2.2.1 GESTURE AND FACIAL RECOGNITION SYSTEM ARCHITECTURE 

Gesture, posture and facial expression recognition are built based on OpenPose gesture and facial libraries. 

OpenPose uses other third party libraries in order to build the methods for training, testing and then, 
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running the recognition models. Some third party libraries are used to perform the whole recognition 

system [96]: 

 Boost: it provides free peer-reviewed portable C++ source libraries. Boost libraries are intended to 
be widely useful and usable across a broad spectrum of applications. They are comprised by a set of 
libraries for the C++ programming language that provide support for tasks and structures such as 
linear algebra, regular expressions and unit testing [97]. 

 Convolutional Architecture for Fast Feature Embedding (CAFFE) is a deep learning framework made 
with expression, speed and modularity. It is developed by Berkeley AI Research and by community 
contributors. The main features are expressive architecture, extensible code and speed [98]. 

 Compute Unified Device Architecture (CUDA) is a parallel computing platform and programming 
model developed by NVIDIA for general computing on graphical processing units (GPUs). With 
CUDA, developers are able to dramatically speed up computing applications by harnessing the 
power of GPUs [99]. 

 The NVIDIA CUDA®, cuDNN is a GPU-accelerated library of primitives for deep neural networks. 
cuDNN provides highly tuned implementations for standard routines such as forward and backward 
convolution, pooling, normalization, and activation layers. cuDNN is part of the NVIDIA Deep 
Learning SDK [100]. 

 Open source Computer Vision (OpenCV) library [101] is the leading open source library for 
computer vision, image processing and machine learning, and now features GPU acceleration for 
real-time operation.   

 gflags is a C++ library that implements command line flags processing. It includes built-in support in 
standard types such as string and the ability to define flags in the source file in which they are used 
[102].  

 Protocol buffers (protobuf) are Google’s language-neutral, platform neutral, extensible mechanism 
for serializing structure data in a faster and simpler way than other technologies such as XML [103]. 

 

OpenPose architecture consists of a two-branch multi-stage CNN. CNNs are very similar to ordinary NNs. 

They are composed of neurons that have learnable weights and biases. Each neuron receives some inputs. 

The whole network expresses a single differentiable score function: from the row image pixels on one end 

to class scores at the other. They also have a loss function on the last (fully connected) layer. Therefore, a 

CNN is comprised of one or more convolutional layers and then followed by one or more fully connected 

layers as in a standard multilayer NN. The architecture of a CNN is designed to take advantage of the 2D 

structure of an input image (or another 2D input). This is achieved with local connections and tied weights 

followed by some form of pooling which results in translations invariant features. Another benefit of CNNs 

is that they are easier to train and have fewer parameters than fully connected networks with the same 

number of hidden units [104]. 

Regarding the OpenPose  (Figure 10), each stage in the first branch predicts a confidence map (i.e. 

a probability density function on the new image, assigning each pixel of the new image a probability) and 

each stage in the second branch predicts part affinity fields (PAFs). After each stage, the prediction form 

the two branches along with the image features are concatenated for the next stage [9].In more detail, the 

detection is composed by three stages: 
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 Stage 0: The first 10 layers of the CNN are used to create feature maps for the input image. 

 Stage 1: A 2-branch multi-stage CNN is used where the first branch predicts a set of 2D confidence 

maps of body part locations. The second branch predicts a set of 2D vector fields (L) of part 

affinities, which encode the degree of association between parts. 

 Stage 2: The confidence and affinity maps are parsed by greedy inference to produce the 2D key 

points for all people in the image. 

 

Figure 10. Architecture of the two-branch multi-stage CNN. Each stage in the first branch predicts confidence maps St. Each stage in 
the second branch predicts PAFs Lt 

3.2.2.2 GESTURE RECOGNITION SYSTEM 

OpenPose-pose key points are used to classify different gestures like hand on head or raising leg (Figure 

11). In Figure 11, which corresponds to the frontal view of a person body, OpenPose detects 18 key points. 

In some other cases, the library can detect a different number of key points depending on the quality of the 

image and the human pose. 

The recognition application builds a sample vector by computing the distances between a set of reference 

key points or only one key point to all other pose key points. The distance metric allows users to uniquely 

classify different human postures.  

Using these sample vectors, a machine learning algorithm is training in order to learn how to classify 

different human gestures or postures. 
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Figure 11. OpenPose pose keypoints 

3.2.2.3 FACIAL EXPRESSION RECOGNITION SYSTEM 

OpenPose-face key points, illustrated in Figure 12, are used to classify different human face expressions. As 

in the previous case, the recognition system constructs a sample vector using both diverse distance 

measures [105] from a reference key point or a set of reference key points (e.g. key point 30, which refers 

to the tip of nose) to all other face key points.  

In order to reduce the high dimensionality of the vector space and to obtain a better classification, key 

points from point 0 to 16, (chin and jaw) could be ignored. However, as explained in the gesture recognition 

case, the number of key points can be variable depending on the quality of the image and the human pose.  

Using these sample vectors, a machine learning algorithm is training in order to learn how to classify 

different facial expressions. 

 

 

Figure 12. OpenPose face keypoints 
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3.2.3 REQUIREMENTS 

In order to obtain a good performance of the system, a wide variety of images and video sequences with 

their corresponding annotation should be needed. These instances should have enough quality in terms of 

clarity (i.e., avoid occlusions of the important parts to detect), lightning conditions, distance to the subject 

and resolution.  

In addition, requirements for the default configuration are outlined as follows: 

 NVIDIA GPU version: NVIDIA graphics card with at least 1.6 GB. 

 At least 2.5 GB of free RAM memory (assuming that cuDNN is installed). 

 AMD GPU version: Vega series graphics card. At least 2 GB of free RAM memory. 

 CPU version: Around 8GB of free RAM memory. 

 Highly recommended: a CPU with at least eight cores. 

3.3 VOCALIZATION RECOGNITION SYSTEM 

3.3.1 PRE-PROCESSING OF THE MATERIALS 

Vocalization recognition tools, in their current form, expect mono pulse code modulation (PCM) wave file 

sampled at 16 kHz. For the time being, the extraction of audio layer from video files is being accomplished 

with the help of third-party tools, e.g. ffmpeg. 

3.3.2 METHODS 
In short, the algorithms used for vocalization recognition are based on Hidden Markov Models (HMMs). 

First, signal processing (parametrization) modules allow choosing either Mel-scale filterbank, MFCC, or their 

gammatone counterparts as the main static vector, plus a number of  optional features. The static vector 

can be extended by its frame-domain derivatives of 1st and 2nd order. We are planning to implement the 

extraction of additional static features from the signal, based on literature (currently only maximum 

autocorrelation coefficient is used). 

In this solution, every unique vocalization type is stored as a list of distinct states of the event and the state 

transition matrix. Each state is assumed to correspond to one stationary segment of audio observations (a 

segment that is expected to appear within a modeled event); the stationary signal in a given state is thus 

represented by its Gaussian Mixture Model (GMM), that describe distributions of parameters mentioned 

before (e.g.MFCC). It is also possible to extend the models by explicit state duration distributions, which 

formally makes them semi-Markov rather than HMM. 

3.3.2.1 ESTIMATION OF MODELS 
The training procedure consists of two phases: 

 Unsupervised audio frame clustering, using the GMM method: the number of distinct states of the 

model is also determined at this stage – the information criterion: Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC) or mixture or both is calculated for this purpose; the 

clustering is currently top-down, ie. as long as the chosen criterion increases, the largest 

component (distribution) is split into two, and all observations are reassigned across new set of 

distributions; the phase is finished by transferring every component of the final GMM to the HMM 

model as the initial distribution of a single-mixture hidden state; 
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 Reestimation until convergence, using Expectation-Maximization (EM) method: the observation 

distributions held in Markov states, the state transition matrix and optionally state duration 

distributions are iteratively readjusted to better model the training examples; classical Baum-Welch 

is run in case of standard HMM models, more complex duration distribution-aware algorithms are 

implemented for the semi-Markov case. 

3.3.2.2 DETECTION OF EVENTS 

The Markov model-based detection framework assumes that an event matching a given model can start 

and end on any time across a recording, that there can be zero, one or many events of this kind, but the 

events corresponding to the same model cannot overlap (however, concurrent models, i.e. different 

vocalization types belonging to the same person, are currently treated independently, and thus their 

detections can overlap). 

A Token-Passing algorithm is implemented (its complexity is dependent on whether state duration 

distributions are explicitly modeled). A token represents an event hypothesis that is partially matched to 

some range of input observations, and ‘currently’ occupies one of the states. As mentioned before, a new 

event can potentially start at any frame. Each token thus remembers its supposed start time, as well as its 

accumulated cost from this point: acoustics (GMM emission probability), transition/duration distributions 

and constant insertion penalties all contribute to the total cost; in fact, those factors are stored separately 

in a token data (the reason is that the pruning and the final scoring, both explained below, may use 

different sets of weights). 

With each observation, ie. short-time audio frame, tokens are passed from state to state according to the 

transition matrix (whenever a state has more than one possible successor, tokens currently occupying this 

state will be ‘cloned’ before being propagated). Whenever two tokens meet at the same time the same 

state (in explicit duration case: also having the same current state entry time), the dearer one is discarded. 

To speed up computation, heuristic pruning is implemented, that puts out least promising candidates 

within a set of tokens belonging to the same model. Necessarily, both operations discussed here are based 

on average cost per frame from the supposed event start, as opposed to partial cost from the start of the 

sentence (the latter is used in automatic speech recognition (ASR); note the importance of well-tuned 

insertion penalties for handling of very short candidates in “average cost” case). 

Whenever a token reaches a final state of the model, it undergoes a final scoring: a weighted sum 

of acoustic and transition/duration average per frame cost (plus a term penalizing very short candidates) 

must be lower than a given threshold. Currently, the threshold value has to be tuned manually (it can be 

done separately for each model). Finally, from overlapping candidates, only the most likely are preserved. 

The implementation of this last rule of the algorithm is not yet fully on-line, meaning that the results for a 

provided recording are presented all at once. 

3.3.3 REQUIREMENTS 

The procedures currently assume: 

 Audio format of mono PCM 16-bit, 16 kHz; 

 The training examples of signals of interest to be precisely annotated by experts (the training tool 

actually requires an input wave file to be precisely cropped to a signal range that contains a training 

example, and stored one example per file, but this is only a temporary technical limitation). 

We expect that the accuracy of recognition will depend primarily on: 

 Number of examples for each vocalization model; 
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 The quality of recordings (possible methods for voice tracking from multi-channel audio are 

considered, but not implemented). 

 The accuracy of training material annotation; 

 The success of extra parametrization features. 

The detection procedures are efficient enough to run in real-time on a contemporary consumer-class PC for 

a realistic number of unique signals (event types) that are concurrently recognized, unless a very 

computationally expensive (likely neural network-based) analysis is introduced in the future. The 

procedures are currently written in C++ and compiled under Microsoft Windows®, however there are no 

fundamental obstacles to compile these to run under other operating systems. 

3.4 PHYSIOLOGICAL PARAMETERS MONITORING SYSTEM 

3.4.1 PRE-PROCESSING OF THE MATERIALS 

All of the camera-based methods use the face of the subject as the “field of interest” in their research. For 

that reason, using the OpenCV library, we detected the face of the subject. Since the other parts of the 

frame rather than the face of the subject are not needed, we deleted them and only kept the frame of the 

face of the subject. 

The skin-based approach uses the information skin pixels contain about the blood flow of an individual to 

retrieve the PPG signal. Because we only want the skin pixels, it is necessary to implement a method that 

discriminates well skin and non-skin pixels. Here we describe two methods. The first method is fast, simple 

and works well on our dataset. This method however might not be robust for all skin types. Therefore, the 

second model uses machine learning to learn itself. 

In the first method, we transform the RGB color space into the YCbCr color space. This color space is 

commonly used for video compression and does therefore contain less redundant information. Using some 

reasonable thresholds on the values in the color space, we classify which pixels belong to the skin and 

which do not. 

The second method applies one-class support vector machines to classify the skin pixels. The SVM model is 

obtained using unsupervised clustering  on the first three frames, while from the forth frame on starts 

classifying the skin pixels. As features, we use the relations between the values of the RGB color space as 

well as the YCbCr color space. This method of skin classification returns less precise results, but works on all 

skin types. 

Both of the skin classification methods classify some of the non-skin pixels as skin. To avoid false positives, 

we select only the pixels that are most likely to be skin. To do so, we calculate the mean value of all the skin 

pixels returned by the classifier and remove some proportion of the pixels whose position in the YCbCr 

color space is not near the mean value. 

3.4.2 METHODS 
We will focus on obtaining the PPG signal from camera recordings. This PPG signal is often referred in the 

related work as rPPG and therefore, we will also use this term from now on. 

There are two approaches for obtaining the rPPG signal from a camera recording – color based approach 

and motion based approach. We will describe the methods we used for both of the approaches.  
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3.4.2.1 COLOR-BASED APPROACH 

Since retrieving the rPPG signal from video recording appears to be quite difficult, we tried seven different 

methods. Five of the methods are inspired by the related work, while we developed the other two 

ourselves. Some of the steps between different methods overlap with each other. 

Color-based method 1 

By sequencing the averaged value of the red, green and blue intensity of all the skin pixels, the method 
creates three different traces. Because all of these traces contain information about the blood flow, we 
normalize them and transform them with independent component analysis (FastICA algorithm [106]) [63] 
[64]. This method still returns three signals, so based on the power spectrum of the frequencies included in 
the signal, we choose the one with most frequencies in the range [0.6 Hz, 4 Hz] as rPPG. 

Color-based method 2 

Another method also uses the three normalized traces as the previous method, but instead of applying the 

independent component analysis, assumes that the three traces are dependent on each other and 

therefore uses principal component analysis to extract only one trace, which represents the rPPG signal 

[65]. 

Color-based method 3 

As well as the first and the second method, the third method also uses the mean of the red, green and blue 

intensity all the skin pixels [62]. To retrieve the rPPG signal, this method makes a linear combination from 

the red green and blue traces, resulting with two other traces X and Y calculated as follows: 

X = 3R - 2G 

Y = 1.5R + G - 1.5B. 

The X and Y traces are afterwards filtered and combined to retrieve the rPPG signal.  

This method was already implemented in the BOB library4 and therefore, we use this library to retrieve the 

rPPG signal. 

Color-based method 4 

The forth method is an upgrade from the third method. While the third method retrieves the rPPG signal by 

averaging the RGB values of all skin pixels from the face, this method uses all skin pixels as independent 

components that retrieve pulse traces. The pulse traces are afterwards combined into a single rPPG signal 

[66].  

Since face region pixels might disappear from the frame (e.g., the subject has moved his head from the left 

side to the right), tracking them for a long-time period might not be efficient. Therefore, using the 

Farneback tracking algorithm [107], we are tracking each set of pixels detected from the first frame only for 

three seconds. This tracking technique returns the optical flow for each pixel in the image and not only for 

the corners. In order to prevent big tracking error, we use forward-backward flow tracking [108] to filter all 

pixels whose backtracked coordinate distance is larger than one.  

                                                           
4
 https://pypi.org/project/bob.rppg.base/ 
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In order to produce the pulse traces, we calculate the difference of the RGB values between two sequential 

pixels and normalize them. Afterwards, we apply the steps from the third method for each skin pixel from 

the head that was not filtered out, and get a 3-second interval rPPG signal. Using principal component 

analysis, we combine all pulse traces into a single rPPG signal. The 3-second interval rPPG signals are 

merged together into one the resulting rPPG signal. 

Color-based method 5 

This method uses all skin pixels from one frame to define the space this frame is represented in [67]. 

By tracking the changes in this space, we retrieve the rPPG signal. To accomplish this, a covariance matrix is 

computed to represent the space. The blood flow into the skin causes changes in this covariance matrix for 

each frame. By calculating the eigenvectors and the eigenvalues of the covariance matrix, we get a 

representation of the color space for the skin pixels. The rotation between two eigenvectors of sequential 

frames presents the changes of the color space. This rotation is also related to different relative PPG 

contributors and therefore, by concatenating the rotation between the first opposing to the second and the 

third eigenvector, rPPG-like traces are retrieved. The eigenvalues are also influenced by the pulsatile blood 

and thus are used to scale the changes in the two rPPG-like signals. The final rPPG signal is produced as a 

combination of the two rPPG-like signals. This method is also implemented as part of the BOB library4, 

which we use to retrieve the rPPG signal. 

Color-based method 6 

Because the results of the previous four methods were not satisfying enough, we decided to try to filter 

their output rPPG signal using deep learning. To accomplish this, we used a LSTM model as well as an auto-

encoders model. As input to the model, we used the rPPG signal retrieved by one of the previous 

algorithms. As target, we set the original PPG signal measured by a finger PPG sensor. The window in the 

LSTM model was set to five seconds, while the network architecture consisted of two LSTM layers. The auto 

encoders consisted of two encoding and two decoding feed-forward layers. 

Color-based method 7 

Inspired by the sixth method, we decided to put some of the skin pixels as input into the LSTM model and 

set as target the original PPG signal. 

3.4.2.2 MOVEMENT-BASED APPROACH 

While other methods use the skin as a basis for analyzing the blood flow of the subject, another method is 

using the head oscillations [71]. In this method, we track the flow of the top features using the Lucas-

Kanade flow-tracking algorithm [109]. We select only the vertical flow vectors and because the heart beats 

with frequency in the interval of [0.6 Hz, 4 Hz], we filter the frequencies that do not belong to this interval. 

Afterwards we apply principal component analysis and similarly as in the previous state of the art methods, 

we select the most rPPG-like signal as a result. 

3.4.2.3 AGGREGATION OF RECONSTRUCTED SIGNALS 

The PPGs reconstructed using presented methods will be aggregated using a meta machine learning model. 

To this end, we will evaluate several meta learners to determine the most appropriate one for our data. 

Additionally, we will focus on meta learners that are capable of estimating the quality of underlying models 

in order to increase the quality of the reconstructed PPG.  
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3.4.2.4 CALCULATION OF PHYSIOLOGICAL PARAMETERS 

The physiological parameters will be estimated by detecting the peaks in the PPG signal, which correspond 

to heartbeats. This way, heart rate and heart-rate variability can be derived. In addition, features will be 

computed from the morphology of the segmented PPG cycles, with which we will attempt to estimate 

respiratory rate and blood pressure. 

3.4.2.5 DETERMINING THE PSYCHOLOGICAL STATE  

Based on the physiological parameters, the psychological state of the subjects can be determined. For this 

purpose, we will adapt state-of-the-art methods from this field to the specific requirements of our target 

group. The main goal is to distinguish between three psychological states (displeasure, neutral, pleasure); 

however, we will also attempt to determine other states. It should be noted that this psychological state is 

only a partial estimation, which will be fed into a global estimator that will also consider data from gesture, 

facial and vocalization recognition systems. 

3.4.3 REQUIREMENTS 

Because all of our methods use video recordings to measure the physiological parameters, the quality of 

the camera will be of crucial importance. A frame rate of at least 20 fps is enough to measure the heart rate 

of a subject. Heart-rate variability can also be measured at 20 fps, but it is more precise with a higher frame 

rate. To extract physiological measures such as blood pressure and breathing rate, more subtle information 

contained in the PPG signal is needed and consequently higher frame rates. We have not hard data on how 

high, but around 50 fps seems reasonable. 

Since we are analyzing small movements and changes in the color of the face, the resolution of the images 

is very important. Results from related work show that resolution of 1280x720 pixels can be used to extract 

rPPG [71]. 

Most of the evaluated methods do not have any specific hardware or software requirements. However, 

deep learning methods typically require nVidia GPUs. Since these methods seem the most promising, we 

would require GPUs to greatly accelerate learning and evaluation of the developed models. 

Considering that most of the methods use the effect of photo plethysmography, the subject will have to be 

in a well-lit environment.   
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4 EXPERIMENTS AND RESULTS 

4.1 GESTURE RECOGNITION SYSTEM 

4.1.1 CLASSIFIER FOR THE GESTURE RECOGNITION SYSTEM 

Following the method explained in Section 3.2.2.2, a set of OpenPose-face key points were used to classify 

different human gestures. 

For this initial experiment, four gestures were selected: “hand_on_hand”, “foot_on_foot”, 

“raising_right_arm” and “raising_left_arm”. A sample vector codified each gesture by calculating the L2 

Euclidean distance measure [105] from a reference key point to the rest of points that represent the body. 

In this case, the reference key point was associated to the neck, value equal to zero (Figure 11).  

Hence, each gesture was represented by a vector of L2 distances. It is important to note that each gesture 

can be described by “n” vectors of distances. The latter occurs because there could exist different gesture 

poses and orientations for the same expression, so the distances between key points could be varied for 

the same gesture.  

4.1.1.1 MATERIALS AND SETUP 

In this initial experiment, three video files were used.  These files contained diverse behavior scenarios of 

two subjects. Each video-file was divided into frames, which contained the most relevant information in 

terms of gestures. 

In total, a batch of 149 samples, which were associated to a sequence of five vectors that corresponds to 

the frames of 18 dimensions (i.e. 18 keypoints per frame), was considered. The batch input shape of the 

layer was then (149, 5, 18), and the “input_shape”, not including the samples dimension, was (5, 18).  

Once the input dataset was built, one part of the data was selected for the training phase and the other 

part was used for the test stage in a proportion of 67:33, respectively. 

A Time Distributed Feed Forward (dense) NN was used to train the recognition system using the set of 

training gestures (Figure 13). 
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Figure 13. Results obtained during the training phase of the NN algorithm for gesture recognition 

4.1.2 RESULTS OF THE GESTURE RECOGNITION SYSTEM 

After training the algorithm, a validation of the model was performed with the previously selected test 

dataset.  

Figure 14 shows the total performance of the model during the test stage. On the other hand, Figure 15 

depicts the resulting confusion matrix, i.e. the false positive and false negative rate, as well as the true 

positive and negative results.  

It can be seen that the system, using the test dataset, wrongly predicts only three cases for 

“hand_on_head” when the true expression would be “raising_right_arm”. The confusion matrix determines 

that the model predicts “raising_right_arm” and the true expression would be “foot_on_foot” and finally 

the algorithm suggests, in one case, “foot_on_foot” when it would be “hand_on_head”. The obtained error 

test rate (the rate of wrongly classified instances by using the test dataset) was 0.10. 

Therefore, using this preliminary training and test dataset, an accuracy equal to 0.90 was achieved for the 

whole system, i.e., the gesture recognition model for a set of four body gestures. This means that if the 

system receives a video file as input, it will be able to identify which gesture corresponds to the body 

expression shown in the recording with an accuracy of 0.90. 
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Figure 14. Detail of the performance results during the classifier training and test of the gesture recognition system 

 

Figure 15. Confusion matrix obtained by the model for the gesture recognition system 

After building the final gesture recognition model, the experimentation was carried out using the pre-

defined set of video files of PMLD patients. Some results from the experiments are shown below (Figure 16 

to Figure 19). 
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Figure 16. Gesture Recognition System result “foot_on_foot”, accuracy = 0.94
 

 

 

Figure 17. Gesture Recognition System result “hand_on_head”, accuracy = 0.97
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Figure 18. Gesture Recognition System result “raising_left_arm”, accuracy = 0.97
 

 

 

Figure 19. Gesture Recognition System result “raising_right_arm”, accuracy = 0.93
 

4.2 FACIAL EXPRESSION RECOGNITION SYSTEM  

4.2.1 CLASSIFIER FOR THE FACIAL EXPRESSION RECOGNITION SYSTEM 

In this experiment, four expressions were selected: “closed eyes”, “frown”, “mouth_open” and 

“corners_mouth_up”. For each expression, a sample vector was built by means of computing the 

L2 distance measure [105] from a reference key point (key point 30, which refers to the tip of nose) to the 

rest of face key points. Therefore, a vector of distances determines a particular facial expression. As in the 

previous case of the gesture recognition system, “n” vectors of distances described each expression, 
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because there could exist different head poses and orientations for the same expression, so the distances 

between key points could be varied for the same facial expression.  

4.2.1.1 MATERIALS AND SETUP 

For these preliminary experiments, several video files were used. These files contained several behavior 

scenarios of three patients across six recordings. Each video file was divided into frames, which contained 

the most relevant information in terms of facial expressions. 

In total, a batch of 256 samples, where each sample was a sequence of five vectors of 53 dimensions, was 

considered for this initial experimentation. The batch input shape of the layer was then (256, 5, 53), and 

the “input_shape”, not including the samples dimension, was (5, 53).  

Once the input dataset was built, one part was selected for the training phase and the other part was used 

for the test stage in a proportion of 67:33, respectively. 

A Time Distributed Feed Forward (dense) NN was used to train the recognition system for the set 

of selected expressions (Figure 20). 

 

Figure 20. Results obtained during the training phase of the NN algorithm for the facial expression recognition model 

4.2.2 RESULTS OF THE FACIAL EXPRESSION RECOGNITION SYSTEM 

After training the algorithm, a validation of the model was performed with the previously selected test 

dataset.  

Figure 21 depicts the total performance of the model during the test stage. Figure 22 shows the confusion 

matrix obtained, i.e. the false positive and false negative rate, as well as the true positive and negative 

results.  

It can be seen that the system, using the test dataset, wrongly predicts only two cases for “closed_eyes” 

when the true expression would be “frown”. The confusion matrix determines that the model predicts 

“mouth_open” and the true expression would be “corners_mouth_up” and finally the algorithm suggests, 

in one case, “corners_mouth_up” when it would be “closed_eyes”. The obtained error test rate was 

0.0824. 
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Therefore, using this preliminary training and test dataset, an accuracy equal to 0.9176 was achieved for 

the whole system, i.e., the facial recognition model for a set of four facial expressions. This means that if 

the system receives a video file as input, it will be able to identify which facial expression corresponds to 

the face shown in the recording with a percentage of accuracy of 91.76. 

 

Figure 21. Detail of the performance results during the classifier training and test for the facial expression recognition system 

 

Figure 22. Confusion matrix obtained by the model for the facial expression recognition system 

After building the final facial expression recognition model, the experimentation was carried out using the 

pre-defined set of video files of PMLD patients. Some results from the experiments are shown below 

(Figure 23 to Figure 25). 
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Figure 23. Facial Expression Recognition System result “closed_eyes”, accuracy = 0.99
 

 

Figure 24. Facial Expression Recognition System result “mouth_open”, accuracy = 0.91
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Figure 25. Facial Expression Recognition System result “frown”, accuracy= 0.99
 

4.3 VOCALIZATION RECOGNITION SYSTEM 

4.3.1 MATERIALS 

For preliminary experiments, vocalizations found in ''orzeszek_03_2018_sounds'' were used. The session 

contained annotated recordings of two caretakers, across a total of three recordings: Person A demands, 

Person A protest and Person F demands. The following ''message models'' were built, corresponding to 

unique vocalizations (labels) that were found in the recordings: 

Table 2. Detailed material used in the preliminary experiments for Vocalization Recognition System 

Label No. examples 

Person_A.hums 7 
Person_A.laughs 3 
Person_A.many 1 
Person_A.squeals 1 
Person_A.wails 9 
Person_F.snores 7 
Person_F.o-oh 3 

4.3.2 SETUP 

Two separate experimental setups were assumed: 

 Test-on-train setup (ToT), where each model was build based on all its known examples 

 Pseudo-cross-validated (pXV) setup, in which for every label except Person_A.many and 

Person_A.squeals three separate models were build, each excluding about 1/3 of training 

examples. 

Models were always tested on all recording featuring a given person. The fact that in both versions training 

examples were present in the testing material was enforced by a low number of examples selected for 

preliminary experiments, especially in the fact that there was no vocalization label that would appear 
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across more than one recording. However, the converse statement is not completely true in case of cross-

validated setup, where not all testing examples were used for training. In addition, each particular 

vocalization (i.e. realization) was represented by numerically different values depending on having been 

calculated from training or testing material (this is because of how signal parametrization works, 

specifically: when using short-time analysis, the features are calculated with a uniform window-shift 

constant, e.g. every 10 ms, therefore the exact two parametrizations of a given instance were numerically 

different if a training example’s offset related to the testing file was not a multiple of the window-shift 

constant; it needs to be stressed, though, that despite being numerically different, they still represent the 

same ‘physical’ example). 

4.3.3 RESULTS 

The detecting program was run at a very high sensitivity (low detection threshold), resulting in a high 

number of false alarms. The output was then subject to post-processing, which consisted of calculating 

selected classification measures at different detection thresholds. The final threshold values were selected 

to minimize the total number of false rejections and false alarms (it is currently assumed that each 

vocalization model can have a distinct threshold value, but a 'global' threshold was also separately 

determined). 

A number of various digital signal processor (DSP) parametrization and modeling configurations were 

tested. The best results were obtained for static-only (no delta/acceleration coefficients) generalized MFCC 

features with ''warp factor'' set to 165 with additional maximum autocorrelation coefficient; the detector 

was based on HMMs, without explicit duration modeling. 

Table 3. Obtained results in the preliminary experiments for the Vocalization Recognition System 

Set Recall Precision F1 

Person_A.hums (pXV) 19.0 100 32.0 
Person_A.laughs (pXV) 22.2 100 36.7 
Person_A.wails (pXV) 88.9 75.0 81.4 
Person_Fr.snores (pXV) 19.0 100 32.0 
Person_F.o-oh (pXV) 100 100 100 
pseudo-Cross-Val combined 49.4 74.1 59.3 
pCV comb'd (glob.thresh.) 39.1 17.8 24.5 
Person_A.hums (ToT) 100 100 100 
Person_A.laughs (ToT) 100 100 100 
Person_A.many (ToT) 100 100 100 
Person_A.squeals (ToT) 100 100 100 
Person_A.wails (ToT) 100 100 100 
Person_F.snores (ToT) 28.6 100 44.4 
Person_F.o-oh (ToT) 100 100 100 
Train-on-Test combined 76.5 63.4 69.3 
ToT comb'd (glob.thresh.) 73.5 16.9 27.5 

4.4 PHYSIOLOGICAL PARAMETERS MONITORING SYSTEM 

In this section, we present the results of those methods from Section 0 that we have already implemented.  
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4.4.1 MATERIALS AND SETUP 

To measure the physiological parameters of the subjects in a non-contact way, we need the PPG signal 

measured with a contact device as the ground-truth. This is commonly done with a professional fingertip 

PPG sensor, which captures the precise waveform. By comparing our results with the ground-truth PPG 

signal returned from such a fingertip device, we evaluate how good our results are. Since the materials 

collected in the project so far do not have such ground truth, we used the COHFACE dataset5 for the 

preliminary evaluation of our methods. This dataset consists of 160 videos from 40 different subjects. Each 

of the subjects is recorded four times at different lighting conditions. The faces of the subjects in this 

dataset cover approximately only 180x180 pixels, while in the related work these dimensions rise to 

1280x720. However, this dataset is the best we encountered so far. 

Pre-processing consisted of skin detection only. As explained in Section 3.4.1, we use two different 

methods to classify which of the pixels belong to the skin. The first one applies thresholds to classify the 

skin pixels. Figure 26 shows an example of the mask returned by this method. 

 

 

Figure 26. Classified skin using the threshold method 

The other skin classification method uses machine learning to classify which of the pixels belong to the skin. 

The results from this method are shown in Figure 27. The result in Figure 26 is better, but the thresholds 

used are fitted for our dataset and might not work as well on other video recordings. 

 

 

Figure 27. Classified skin using the machine learning method 

                                                           
5 https://www.idiap.ch/dataset/cohface - Idiap Research Institute 2010 

https://www.google.com/url?q=https://www.idiap.ch/dataset/cohface&sa=D&source=hangouts&ust=1535630239587000&usg=AFQjCNGBenN4JPoSGgxfzYAn4Hb9R4rEtg
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4.4.2 RESULTS 

Here we present the results of the methods for reconstruction of PPG signal. To evaluate them, we 

compare our output to the ground-truth PPG signal. We calculate Mean Squared Error (MSE) and Mean 

Absolute Error (MAE) to measure the correlation between the two signals. In addition, we use a peak 

detection method to estimate the heart rate and we compared the obtained heart rate to heart rate 

obtained from the ground-truth PPG. The results are presented in Table 4. In addition, the first 10 seconds 

of each person are shown in Figure 28-Figure 33. 

Table 4. Results of the implemented methods 

 MAE between 
signals 

MSE between signals 
Error between heart 

rates 
Color-based method 1 0.040 0.150 42.000 
Color-based method 2 0.040 0.156 42.000 
Color-based method 3 0.160 0.040 20.750 
Color-based method 5 0.160 0.400 11.730 
Color-based method 6 0.040 0.010 8.750 
Motion-based method 0.160 0.040 39.000 

 

 

Figure 28. First 10 seconds from color-based method 1. Orange is the ground-truth PPG and blue is the reconstructed PPG. Y axis 
shows amplitude and x axis shows samples. 
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Figure 29.  First 10 second of color-based method 2. Orange is the ground-truth PPG and blue is the reconstructed PPG. Y axis shows 
amplitude and x axis shows samples. 

 

Figure 30. First 10 second of color-based method 3. Blue is the ground-truth PPG and orange is the reconstructed PPG. Y axis shows 
amplitude and x axis shows samples. 
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Figure 31. First 10 second of color-based method 5. Blue is the ground-truth PPG and orange is the reconstructed PPG. Y axis shows 
amplitude and x axis shows samples. 

 

Figure 32. First 10 second of color-based method 6. Blue is the ground-truth PPG and orange is the reconstructed PPG. Y axis shows 
amplitude and x axis shows samples. 
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Figure 33. First 10 second of motion-based method. Blue is the ground-truth PPG and orange is the reconstructed PPG. Y axis shows 
amplitude and x axis shows samples. 

These results indicate that the rPPG signal reconstructed from the video recording is noisy and therefore it 

would be hard to measure any physiological parameters of emotional state with it. The results of color-

based method 6 are best in regards to the error between estimated and ground-truth HR, but still not 

particularly satisfactory. As mentioned in the beginning of this section, higher quality of the recordings 

could contribute to better results. We will also look for additional methods and improved implementation, 

as well as combinations of methods. 
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5 CONCLUSIONS 

In this deliverable we presented results of the initial work performed on the design of the components for 

the recognition on non-symbolic behavioral signals of individuals with PMLD. This work was targeted at 

understanding the technical requirements concerning building these components, such as consideration of 

which existing methods of artificial intelligence could be adapted to execute the required functionality, and 

their practical use as part of the INSENSION system, such as hardware requirements. We summarize 

conclusions related to these requirements below. 

As far as facial expression and body gesture recognition components are concerned, we carried out a set of 

initial experiments by using the OpenPose technology. The results suggest that this group of techniques is 

suitable to perform the recognizing task for both: facial expressions and human body gestures. However, a 

higher dataset is necessary to increase the recognition performance, as well as improving the accuracy of 

the developed models. Moreover, with regards to the gesture model, a distinction between upper and 

lower parts of the body should be made in order to enhance the model precision and deal with some 

complex and particular movements.  

For the vocalization recognition system, the results of preliminary experiments suggest, unsurprisingly, a 

positive correlation between the number of training examples and the accuracy of detection. In addition, 

those vocalizations that seemed to be easily distinguishable to a human listener (Person_A.wails, 

Person_F.o-oh) tended to have higher automatic detection scores, as well. The future work will include 

primarily extending the parametrization procedures and feature vectors by new features reported across 

literature. In addition, early training phases, especially unsupervised determination of distinct emitting 

states, i.e. mixture clustering, may need to be looked into. 

The preliminary results of the physiological parameters monitoring are not very good. The reconstruction of 

the PPG signal from video is nowhere near as mature as the recognition of gestures, facial expressions and 

vocalizations, so it is not surprising that the problem is proving more difficult. While there are some papers 

showing good results, there are also published claims that these results are difficult to reproduce. We will 

definitely try to improve upon these preliminary results in order to reduce the number of devices required 

for the final INSENSION system. Nevertheless, if needed a strategy to fall back to the contact sensor – a 

wristband – shall be used.  

In summary, a wider experimentation should be performed in the next stages of the project. 

With regards to the hardware requirements of the signals recognition subsystem, composed of the four 

recognition components, Table 5 collects the minimum requirements. It takes into account the requisites of 

each recognition component. 

As it can be observed, the system requirements are relatively high because of the complexity of the 

problem, especially with relation to the gesture and facial recognition components. Regarding the 

materials, a large amount of recordings with precised annotations shall be needed for obtaining a good 

performance of the system. The optimal image resolution varies depending on the recognition component 

– a minimum can be established as 1280 x 720 pixels that corresponds to the highest identified 

requirement.  The rest of the requisites seems to be compatible among the four recognition components. 

Preliminary experiments suggest that we may expect that these minimum requirements shall not need 

redefinition. 
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Table 5. Technical requirements of the behavioral signals recognition subsystem 

System 

NVIDIA graphics card with at least 1.6 GB. 
At least 2.5 GB of free RAM memory. 
GPU version: at least 2 GB of free RAM memory. 
CPU version: around 8GB of free RAM memory. 
CPU with at least eight cores.   

Materials 

Gesture and facial expression Vocalization Physiological parameters 

A wide variety of RGB images and 

video sequences. 

Minimum size of the person in the 

image: 1/3 total size of the image. 

Minimum image resolution of 

640x480. 

Precised annotations. 

Audio recordings mono PCM 16-bit, 

16 kHz. 

Precise annotations. 
 
 

50 fps recordings. 

1280x720 pixels RGB recordings. 

Environment 

Gesture and facial expression Vocalization Physiological parameters 

Avoiding occlusions in face and body 
parts. 
Good lighting conditions. 

Avoiding audibility of over persons 
with PLMD. 
 

Good lighting conditions. 
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APPENDIX A. SUMMARY OF DATA GENERATED/COLLECTED WITHIN 

INSENSION PROJECT 

 

Area 
Main  

Category 
Subcategories Tiers TS6 ES7 

1. Communication 
and Inner States 

Communication 

- comment 
- demand 
- protest 

 X 

Inner States 

- pleasure 
- displeasure 
- neutral 

 X 

2. Behaviours 

Vocalizations  X 

Facial 
Expressio
ns 

2.1.1. Appearance of 
Eyes 

- eye contact  
- widened eyes  
- closed eyes  
- sleepy eyes 
- “smiling” eyes 
- winking  
- tears  
- eyebrow movement 
- frown 

X  

2.1.2. Movement/ 
Appearance of 
Jaw 

- drooping   
- grinding 
- biting 

X  

2.1.3. Movement of 
Nose and 
Mouth 

- nose movements  
- lip movements  
- tongue movements  
- tongue out-side 
- loss of saliva  
- corners of mouth up 
- corners of mouth 

down 

X  

gestures/ 
movemen
ts 

2.1.4. Body Posture 

- rigid  
- floppy  
- jerky  
- restless  
- leans to side 

X  

2.1.5. Movement of 
Head 

- rigid 
- floppy  
- shaking 
- nodding 
- turns head to side 
- leans to side 

X  

2.1.6. Movement of 
Left Arm 

- rigid  
- floppy 

X  

                                                           
6
 Time sampling (TS) 

7
 Event sampling (ES) 
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- jerky  
- outstretched arm 
- flexed arm 
- raising arm 
- arm close to the 

body 

2.1.7. Movement of 
Right Arm 

rigid  
- floppy 
- jerky  
- outstretched arm 
- flexed arm 
- raising arm 
- arm close to the 

body 

X  

2.1.8. Movement of 
Left Hand 

hand on hand 
hand on head 

X  

2.1.9. Movement of 
Right Hand 

hand on hand 
hand on head 

X  

2.1.10. Movement of 
Left Leg 

outstretched leg 
rubbing 
flexed leg 
raising leg 

X  

2.1.11. Movement of 
Right Leg 

outstretched leg 
rubbing 
flexed leg 
raising leg 

X  

2.1.12. Movement of 
Left Foot 

foot on foot 
X  

2.1.13.  Movement of 
Right Foot 

foot on foot 
X  

2.1.14.  Specific 
Movements 

specific movements 
 X 

3. Context Persons 

3.1.1. Person A 

present 
involved in interaction 

with test-person 
involved in interaction 

with test-person and 
object 

 X 

3.1.2. Person B 

present 
involved in interaction 

with test-person 
involved in interaction 

with test-person and 
object 

 X 

3.1.3. Person C 

present 
involved in interaction 

with test-person 
involved in interaction 

with test-person and 
object 

 X 

3.1.4. Person D present  X 
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involved in interaction 
with test-person 

involved in interaction 
with test-person and 
object 

Objects 

3.1.5. Object A 
test-person acts with 

object 
 X 

3.1.6. Object B 
test-person acts with 

object 
 X 

3.1.7. Object C 
test-person acts with 

object 
 X 

3.1.8. Object D 
test-person acts with 

object 
 X 

Background 

3.1.9. Sounds 

loud (volume) 
medium (volume) 
faint (volume)  
music 
human voices 
other noises  

 X 

3.1.10. Light Conditions 
bright 
dark 
change in brightness 

 X 

 

 

 

 


